The prime number graph

Author:
Carl Pomerance

Journal:
Math. Comp. **33** (1979), 399-408

MSC:
Primary 10A25; Secondary 52A10

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514836-7

MathSciNet review:
514836

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the *n*th prime. The *prime number graph* is the set of lattice points , . We show that for every *k* there are *k* such points that are collinear. By considering the convex hull of the prime number graph, we show that there are infinitely many *n* such that for all positive . By a similar argument, we show that there are infinitely many *n* for which for all positive , thus verifying a conjecture of Selfridge. We make some new conjectures.

**[1]**P. ERDÖS, "On the difference of consecutive primes,"*Quart. J. Math. Oxford Ser.*, v. 6, 1935, pp. 124-128.**[2]**P. Erdös,*On the difference of consecutive primes*, Bull. Amer. Math. Soc.**54**(1948), 885–889. MR**0027009**, https://doi.org/10.1090/S0002-9904-1948-09088-7**[3]**P. Erdős,*Some applications of graph theory to number theory*, Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970) Univ. North Carolina, Chapel Hill, N.C., 1970, pp. 136–145. MR**0266845****[4]**Paul Erdős,*Problems and results on combinatorial number theory. III*, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976), Springer, Berlin, 1977, pp. 43–72. Lecture Notes in Math., Vol. 626. MR**0472752****[5]**P. Erdős and K. Prachar,*Sätze und Probleme über 𝑝_{𝑘}/𝑘*, Abh. Math. Sem. Univ. Hamburg**25**(1961/1962), 251–256 (German). MR**0140481**, https://doi.org/10.1007/BF02992930**[6]**P. Erdös and A. Rényi,*Some problems and results on consecutive primes*, Simon Stevin**27**(1950), 115–125. MR**0034799****[7]**P. Erdös and P. Turán,*On some new questions on the distribution of prime numbers*, Bull. Amer. Math. Soc.**54**(1948), 371–378. MR**0024460**, https://doi.org/10.1090/S0002-9904-1948-09010-3**[8]**Douglas Hensley and Ian Richards,*Primes in intervals*, Acta Arith.**25**(1973/74), 375–391. MR**0396440**, https://doi.org/10.4064/aa-25-4-375-391**[9]**A. E. Ingham,*The distribution of prime numbers*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR**1074573****[10]**L. Thomas Ramsey,*Fourier-Stieltjes transforms of measures with a certain continuity property*, J. Functional Analysis**25**(1977), no. 3, 306–316. MR**0442601****[11]**Joseph L. Gerver and L. Thomas Ramsey,*On certain sequences of lattice points*, Pacific J. Math.**83**(1979), no. 2, 357–363. MR**557936****[12]**R. A. Rankin,*The difference between consecutive prime numbers. V*, Proc. Edinburgh Math. Soc. (2)**13**(1962/1963), 331–332. MR**0160767**, https://doi.org/10.1017/S0013091500025633**[13]**G. J. Rieger,*Über 𝑝_{𝑘}/𝑘 und verwandte Folgen*, J. Reine Angew. Math.**221**(1966), 14–19 (German). MR**0183698**, https://doi.org/10.1515/crll.1966.221.14**[14]**L. SCHOENFELD. (In preparation.)**[15]**Sanford L. Segal,*On 𝜋(𝑥+𝑦)≤𝜋(𝑥)+𝜋(𝑦)*, Trans. Amer. Math. Soc.**104**(1962), 523–527. MR**0139586**, https://doi.org/10.1090/S0002-9947-1962-0139586-4**[16]**Sol Weintraub,*Seventeen primes in arithmetic progression*, Math. Comp.**31**(1977), no. 140, 1030. MR**0441849**, https://doi.org/10.1090/S0025-5718-1977-0441849-4

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
52A10

Retrieve articles in all journals with MSC: 10A25, 52A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514836-7

Article copyright:
© Copyright 1979
American Mathematical Society