Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

The $ \nu $-zeros of $ J\sb{-\nu }(x)$


Authors: S. Conde and S. L. Kalla
Journal: Math. Comp. 33 (1979), 423-426
MSC: Primary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1979-0514838-0
MathSciNet review: 514838
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the positive $ \nu$-zeros of $ {J_{ - \nu}}(x)$, regarded as a function of $ \nu$. $ {J_\nu}(x)$ stands for the Bessel function of first kind of order $ \nu$. Some related inequalities are verified and algorithms the computer uses are described briefly.


References [Enhancements On Off] (What's this?)

  • [1] S. CONDE & S. L. KALLA, Tabla de Funciones de Bessel y Raíces de Ecuaciones Transcendentes Relacionadas, Facultad de Ingeniería, Universidad del Zulia, 1977.
  • [2] I. S. GRADSTEHYN & I. M. RYZHIK, Tables of Integrals, Series and Products, 4th ed., Academic Press, New York, 1965.
  • [3] N. N. Lebedev, Special functions and their applications, Revised English edition. Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0174795
  • [4] Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0501762
  • [5] D. Naylor, On an integral transform occurring in the theory of diffraction, SIAM J. Math. Anal. 8 (1977), no. 3, 402–411. MR 0438051, https://doi.org/10.1137/0508030
  • [6] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D20

Retrieve articles in all journals with MSC: 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0514838-0
Keywords: $ \nu$-zeros, series, Bessel functions, asymptotic formula, numerical
Article copyright: © Copyright 1979 American Mathematical Society