Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 33 (1979), 427-429
DOI: https://doi.org/10.1090/S0025-5718-79-99977-0
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Y. L. LUKE, The Special Functions and their Approximations, vols. I, II, Academic Press, New York, 1969. MR 0241700 (39:3039)
  • [2] Y. L. LUKE, Mathematical Functions and their Approximations, Academic Press, New York, 1975. MR 0501762 (58:19039)
  • [1] J. LEECH, UMT 12, "Five tables relating to rational cuboids," Math. Comp., v. 32, 1978, pp. 657-659. MR 0485659 (58:5482b)
  • [2] M. KRAITCHIK, Théorie des Nombres, t. III, Analyse Diophantine et Applications aux Cuboïdes Rationnels, Gauthier-Villars, Paris, 1947.
  • [3] M. KRAITCHIK, Sur les Cuboïdes Rationnels, Proc. Internat. Congr. Math., vol. 2, North-Holland, Amsterdam, 1954, pp. 33-34.
  • [4] M. LAL & W. J. BLUNDON, "Solutions of the Diophantine equations $ {x^2} + {y^2} = {l^2}$, $ {y^2} + {z^2} = {m^2}$, $ {z^2} + {x^2} = {n^2}$," Math. Comp., v. 20, 1966, pp. 144-147. MR 0186623 (32:4082)
  • [5] M. RIGNAUX, "Systéme $ {x^2} + {y^2} = {a^2}$, $ {x^2} + {z^2} = {b^2}$, $ {y^2} + {z^2} = {c^2}$," Intermédiare Math., v. 25, 1918, p. 127.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-79-99977-0
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society