Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

Analysis of optimal finite-element meshes in $ {\bf R}\sp{1}$


Authors: I. Babuška and W. C. Rheinboldt
Journal: Math. Comp. 33 (1979), 435-463
MSC: Primary 65N30
MathSciNet review: 521270
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theory of a posteriori estimates for the finite-element method was developed earlier by the authors. Based on this theory, for a two-point boundary value problem the existence of a unique optimal mesh distribution is proved and its properties analyzed. This mesh is characterized in terms of certain, easily computable local error indicators which in turn allow for a simple adaptive construction of the mesh and also permit the computation of a very effective a posteriori error bound. While the error estimates are asymptotic in nature, numerical experiments show the results to be excellent already for 10


References [Enhancements On Off] (What's this?)

  • [1] Naum I. Akhiezer, The calculus of variations, Translated from the Russian by Aline H. Frink. A Blaisdell Book in the pure and Applied Sciences, Blaisdell Publishing Co. (A Division of Random House, Inc.), New York-London, 1962. MR 0142019 (25 #5414)
  • [2] I. BABUŠKA, "The self-adaptive approach in the finite element method," The Mathematics of Finite Elements and Applications II, MAFELAP 1975 (J. R. Whiteman, Ed.), Academic Press, London, 1976, pp. 125-142.
  • [3] I. BABUŠKA & W. RHEINBOLDT, A-Posteriori Error Estimates for the Finite Element Method, Computer Science Technical Report TR-581, University of Maryland, 1977; Internat. J. Numer. Methods Engrg., v. 12, 1978, pp. 1597-1615.
  • [4] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 0483395 (58 #3400)
  • [5] Werner C. Rheinboldt, Numerical continuation methods for finite element applications, (U.S.-Germany Sympos., Mass. Inst. Tech., Cambridge, Mass., 1976) M.I.T. Press, Cambridge, Mass., 1977, pp. 599–631. MR 0474782 (57 #14415)
  • [6] I. BABUSKA, W. RHEINBOLDT & C. MESZTENYI, Self-Adaptive Refinement in the Finite Element Method, Computer Science Technical Report TR-375, University of Maryland, 1975.
  • [7] Hermann G. Burchard, Splines (with optimal knots) are better, Applicable Anal. 3 (1973/74), 309–319. MR 0399708 (53 #3551)
  • [8] H. G. Burchard and D. F. Hale, Piecewise polynomial approximation on optimal meshes, J. Approximation Theory 14 (1975), no. 2, 128–147. MR 0374761 (51 #10957)
  • [9] W. E. Carroll and R. M. Barker, A theorem for optimum finite-element idealizations, Internat. J. Solids and Structures 9 (1973), 883–895 (English, with Russian summary). MR 0337119 (49 #1891)
  • [10] Carl de Boor, Good approximation by splines with variable knots, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972), Birkhäuser, Basel, 1973, pp. 57–72. Internat. Ser. Numer. Math., Vol. 21. MR 0403169 (53 #6982)
  • [11] C. deBOOR, Good Approximations with Variable Knots. II, Lecture Notes in Math., Vol. 363, Springer-Verlag, Berlin, 1973, pp. 12-20.
  • [12] C. deBOOR & J. R. RICE, An Adaptive Algorithm for Multivariate Approximation Giving Optimal Convergence Rates, Mathematics Research Center, MRC Technical Summary Report 1773, University of Wisconsin, 1977.
  • [13] Carl de Boor and Blâir Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), 582–606. MR 0373328 (51 #9528)
  • [14] V. E. Denny and R. B. Landis, A new method for solving two-point boundary value problems using optimal node distribution, J. Computational Phys. 9 (1972), 120–137. MR 0295583 (45 #4649)
  • [15] T. E. Hull, Numerical solutions of initial value problems for ordinary differential equations, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 3–26. MR 0403226 (53 #7038)
  • [16] H. B. Keller, Numerical solution of boundary value problems for ordinary differential equations: survey and some recent results on difference methods, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 27–88. MR 0451742 (56 #10024)
  • [17] M. Lentini and V. Pereyra, Boundary problem solvers for first order systems based on deferred corrections, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 293–315. MR 0488787 (58 #8297)
  • [18] R. J. MELOSH & D. E. KILLIAN, Finite Element Analysis to Attain a Prespecified Accuracy, Presented at 2nd National Symposium on Computerized Structural Analysis, George Washington University, Washington, D.C., 1976. (Preprint.)
  • [19] R. J. MELOSH & P. V. MARCAL, "An energy basis for mesh refinement of structural continua," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 1083-1091.
  • [20] Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 0373325 (51 #9525), http://dx.doi.org/10.1090/S0025-5718-1974-0373325-9
  • [21] G. M. Phillips, Error estimates for best polynomial approximations, Approximation Theory (Proc. Sympos., Lancaster, 1969) Academic Press, London, 1970, pp. 1–6. MR 0277970 (43 #3703)
  • [22] Carl E. Pearson, On a differential equation of boundary layer type, J. Math. and Phys. 47 (1968), 134–154. MR 0228189 (37 #3773)
  • [23] G. SEWELL, "An adaptive computer program for the solution of $ {\operatorname{Div}}(p(x,y)\operatorname{grad}\,u) = f(x,y,u)$ on a polygonal region," The Mathematics of Finite Elements and Applications II, MAFELAP 1975 (J. Whiteman, Ed.), Academic Press, London, 1976, pp. 125-144.
  • [24] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377 (56 #1747)
  • [25] D. J. TURCKE, "Further developments in grid selection procedures in the finite element method," Proc. Fifth Canadian Congress Appl. Mech., University of New Brunswick, Frederickton, N.B., Canada, 1975.
  • [26] D. J. TURCKE & G. M. McNEICE, "A variational approach to grid optimization in the finite element method," Conf. on Variational Methods in Engineering, Southhampton University, England, 1972.
  • [27] D. J. TURCKE & G. M. McNEICE, "Guidelines for selecting finite element grids based on an optimization study," Computers and Structures, v. 4, 1973, pp. 499-519.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1979-0521270-2
PII: S 0025-5718(1979)0521270-2
Article copyright: © Copyright 1979 American Mathematical Society