Multistep-Galerkin methods for hyperbolic equations

Author:
Vassilios A. Dougalis

Journal:
Math. Comp. **33** (1979), 563-584

MSC:
Primary 65M10; Secondary 65M15, 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521277-5

MathSciNet review:
521277

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Multistep methods for first- and second-order ordinary differential equations are used for the full discretizations of standard Galerkin approximations to the initial-periodic boundary value problem for first-order linear hyperbolic equations in one space dimension and to the initial-boundary value problem for second-order linear selfadjoint hyperbolic equations in many space dimensions. -error bounds of optimal order in space and time are achieved for large classes of such multistep methods.

**[1]**G. A. BAKER, "A finite element method for first order hyperbolic equations,"*Math. Comp.*, v. 29, 1975, pp. 995-1006. MR**0400744 (53:4574)****[2]**G. A. BAKER & J. H. BRAMBLE,*Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations*, Rep. No. 22, Centre de Mathématiques Appliqueés de l'Ecole Polytechnique, Paris, 1977.**[3]**M. CROUZEIX,*Sur l'Approximation des Équations Différentielles Opérationelles Linéaires par des Méthodes de Runge-Kutta*, Thèse de Doctorat d'Etat, Université Paris VI, 1975.**[4]**J. E. DENDY, "Two methods of Galerkin type achieving optimum rates of convergence for first order hyperbolics,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 637-653. MR**0353695 (50:6178)****[5]**V. A. DOUGALIS,*High Order Fully Discrete Galerkin Approximations to Hyperbolic Equations*, Ph. D. Thesis, Harvard University, May 1976.**[6]**T. DUPONT, "-estimates for Galerkin methods for second order hyperbolic equations,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 880-889. MR**0349045 (50:1539)****[7]**T. DUPONT, "Galerkin methods for first order hyperbolics: an example,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 890-899. MR**0349046 (50:1540)****[8]**G. FIX & N. NASSIF, "On finite element approximations to time dependent problems,"*Numer. Math.*, v. 19, 1972, pp. 127-135. MR**0311122 (46:10218)****[9]**E. GEKELER, "Linear multistep methods and Galerkin procedures for initial boundary value problems,"*SIAM J. Numer. Anal.*, v. 13, 1976, pp. 536-548. MR**0431749 (55:4744)****[10]**P. HENRICI,*Discrete Variable Methods in Ordinary Differential Equations*, Wiley, New York, 1962. MR**0135729 (24:B1772)****[11]**J. D. LAMBERT,*Computational Methods in Ordinary Differential Equations*, Wiley, New York, 1973. MR**0423815 (54:11789)****[12]**P. LESAINT, "Finite element methods for symmetric hyperbolic equations,"*Numer. Math.*, v. 21, 1973, pp. 244-255. MR**0341902 (49:6648)****[13]**J. L. LIONS & E. MAGENES,*Problèmes aux Limites Non Homogènes et Applications*, Vols. I & II, Dunod, Paris, 1968.**[14]**M. S. MOCK, "Projection methods with different trial and test spaces,"*Math. Comp.*, v. 30, 1976, pp. 400-416. MR**0423840 (54:11814)****[15]**M. S. MOCK, "Explicit finite element schemes for first order symmetric hyperbolic systems,"*Numer. Math.*, v. 26, 1976, pp. 367-378. MR**0448955 (56:7260)****[16]**I. J. SCHOENBERG, "Contributions to the problem of approximation of equidistant data by analytic functions," Parts A and B,*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99, 112-141.**[17]**G. STRANG, "The finite element method and approximation theory," in*Numerical Solution of Partial Differential Equations*II (*Synspade*1970), ed. by B. Hubbard, Academic Press, New York, 1971, pp. 547-583. MR**0287723 (44:4926)****[18]**B. SWARTZ & B. WENDROFF, "The relative efficiency of finite difference and finite element methods. I: Hyperbolic problems and splines,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 979-993. MR**0362952 (50:15390)****[19]**V. THOMÉE, "Convergence estimates for semi-discrete Galerkin methods for initial-value problems," in*Numerische, insbesondere approximations-theoretische Behandlung von Funktionalgleichungen*, ed. by R. Ansorge and W. Törnig, Lecture Notes in Math., vol. 333, Springer-Verlag, Berlin and New York, 1973, pp. 243-262. MR**0458948 (56:17147)****[20]**V. THOMÉE & B. WENDROFF, "Convergence estimates for Galerkin methods for variable coefficient initial value problems,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 1059-1068. MR**0371088 (51:7309)****[21]**L. WAHLBIN, "A modified Galerkin procedure with Hermite cubics for hyperbolic problems,"*Math. Comp.*, v. 29, 1975, pp. 978-984. MR**0388809 (52:9643)****[22]**B. WENDROFF,*On Finite Elements for Equations of Evolution*, Rep. LA-DC-72-1220, Los Alamos, N. M., 1972.**[23]**M. F. WHEELER, "A priori error estimates for Galerkin approximations to parabolic partial differential equations,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 723-759. MR**0351124 (50:3613)****[24]**M. ZLÁMAL, "Finite element multistep discretizations of parabolic boundary value problems,"*Math. Comp.*, v. 29, 1975, pp. 350-359. MR**0371105 (51:7326)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
65M15,
65N30

Retrieve articles in all journals with MSC: 65M10, 65M15, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521277-5

Article copyright:
© Copyright 1979
American Mathematical Society