A simplified Galerkin method for hyperbolic equations

Authors:
R. C. Y. Chin, G. W. Hedstrom and K. E. Karlsson

Journal:
Math. Comp. **33** (1979), 647-658

MSC:
Primary 65M10; Secondary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521280-5

MathSciNet review:
521280

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We modify a Galerkin method for nonlinear hyperbolic equations so that it becomes a simpler method of lines, which may be viewed as a collocation method. The high order of accuracy is preserved. We present a linear wave analysis of the scheme and discuss some aspects of nonlinear problems. Our numerical experiments indicate that the addition of a proper artificial viscosity makes the method competitive and the common difference schemes, even when the solution has discontinuities.

**[1]**IVO BABUŠKA, "Approximation by hill functions,"*Comment. Math. Univ. Carolinae*, v. 11, 1970, pp. 787-811. MR**45**#1396. MR**0292309 (45:1396)****[2]**EDWARD R. BENTON & GEORGE W. PLATZMAN, "A table of solutions of the one-dimensional Burgers equation,"*Quart. Appl. Math.*, v. 30, 1972, pp. 195-212. MR**46**#5858. MR**0306736 (46:5858)****[3]**LÉON BRILLOUIN,*Wave Propagation and Group Velocity*, Academic Press, New York-London, 1960. MR**21**#6933. MR**0108217 (21:6933)****[4]**T. J. BROMWICH,*An Introduction to the Theory of Infinite Series*, Macmillan, London, 1949.**[5]**R. C. Y. CHIN & G. W. HEDSTROM, "A dispersion analysis for difference schemes: Tables of generalized Airy functions,"*Math. Comp.*, v. 32, 1978, pp. 1163-1170. MR**0494982 (58:13753)****[6]**L. COLLATZ,*The Numerical Treatment of Differential Equations*, Springer-Verlag, Berlin-Heidelberg-New York, 1960. MR**22**#322. MR**784038 (86b:65003)****[7]**BENGT FORNBERG, "On the instability of leapfrog and Crank-Nicolson approximations of a nonlinear partial differential equation,"*Math. Comp.*, v. 27, 1973, pp. 45-57. MR**52**#16046. MR**0395249 (52:16046)****[8]**C. W. GEAR,*Numerical Initial-Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR**47**#4447. MR**0315898 (47:4447)****[9]**JAMES GLIMM & PETER D. LAX, "Decay of solutions of systems of nonlinear hyperbolic conservation laws,"*Mem. Amer. Math. Soc.*, No. 101, Amer. Math. Soc., Providence, R. I., 1970. MR**42**#676. MR**0265767 (42:676)****[10]**A. C. HINDMARSH, GEAR:*Ordinary Differential Equation System Solver*, Lawrence Livermore Laboratory Report UCID-30001, Rev. 1. A.C.C. No. 592, GEAR. Argonne Code Center, Building 221, Argonne National Laboratory, Argonne, Illinois.**[11]**LEON LAPIDUS & JOHN H. SEINFELD,*Numerical Solution of Ordinary Differential Equations*, Academic Press, New York-London, 1971. MR**43**#7071. MR**0281355 (43:7073)****[12]**R. D. RICHTMEYER & K. W. MORTON,*Difference Methods for Initial-Value Problems*, 2nd ed., Interscience, New York, 1967. MR**36**#3515.**[13]**I. J. SCHOENBERG, "Contributions to the approximation of equidistant data by analytic functions,"*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99 and 112-141. MR**7**, 487 and**8**, 55.**[14]**S. I. SERDJUKOVA, "The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations,"*Ž. Vyčisl. Mat. i Mat. Fiz.*, v. 11, 1971, pp. 411-424; English transl.,*U.S.S.R. Computational Math. and Math. Phys.*, v. 11, 1971, no. 2, pp. 140-154. MR**44**#1248. MR**0284018 (44:1248)****[15]**G. STRANG, "The finite element method and approximation theory,"*Numerical Solution of Partial Differential Equations*. II,*SYNSPADE*1970, B. Hubbard, (ed.), Academic Press, New York, 1971, pp. 547-583. MR**44**#4926. MR**0287723 (44:4926)****[16]**G. STRANG & G. FIX,*An Analysis of the Finite-Element Method*, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR**0443377 (56:1747)****[17]**B. SWARTZ & B. WENDROFF, "Generalized finite-difference schemes,"*Math. Comp.*, v. 23, 1969, pp. 37-49. MR**39**#1125. MR**0239768 (39:1125)****[18]**B. SWARTZ & B. WENDROFF, "The relation between the Galerkin and collocation methods using smooth splines,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 994-996. MR**50**#15391. MR**0362953 (50:15391)****[19]**B. SWARTZ & B. WENDROFF, "The relative efficiency of finite difference and finite element methods. I, Hyperbolic problems and splines,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 979-993. MR**50**#15390. MR**0362952 (50:15390)****[20]**VIDAR THOMÉE, "Convergence estimates for semidiscrete Galerkin methods for initial-value problems,"*Numerische, insbesondere approximationstheoretische, Behandlung von Funktionalgleichungen*, Lecture Notes in Math., vol. 333, Springer-Verlag, Berlin-Heidelberg-New York, 1973. MR**0433923 (55:6893)****[21]**V. THOMÉE & B. WENDROFF, "Convergence estimates for Galerkin methods for variable-coefficient, initial-value problems,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 1059-1068. MR**51**#7309. MR**0371088 (51:7309)****[22]**R. VICHNEVETSKY & B. PEIFFER, "Error waves in finite element and finite difference methods for hyperbolic equations," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 1-6.**[23]**R. VICHNEVETSKY & F. DE SHUTTER, "A frequency analysis of finite difference and finite element methods for initial-value problems," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 46-52.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
65N30

Retrieve articles in all journals with MSC: 65M10, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521280-5

Article copyright:
© Copyright 1979
American Mathematical Society