A simplified Galerkin method for hyperbolic equations

Authors:
R. C. Y. Chin, G. W. Hedstrom and K. E. Karlsson

Journal:
Math. Comp. **33** (1979), 647-658

MSC:
Primary 65M10; Secondary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521280-5

MathSciNet review:
521280

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We modify a Galerkin method for nonlinear hyperbolic equations so that it becomes a simpler method of lines, which may be viewed as a collocation method. The high order of accuracy is preserved. We present a linear wave analysis of the scheme and discuss some aspects of nonlinear problems. Our numerical experiments indicate that the addition of a proper artificial viscosity makes the method competitive and the common difference schemes, even when the solution has discontinuities.

**[1]***Approximation by hill functions*, Comment. Math. Univ. Carolinae**11**(1970), 787–811. MR**0292309****[2]**Edward R. Benton and George W. Platzman,*A table of solutions of the one-dimensional Burgers equation*, Quart. Appl. Math.**30**(1972), 195–212. MR**0306736**, https://doi.org/10.1090/S0033-569X-1972-0306736-4**[3]**Léon Brillouin,*Wave propagation and group velocity*, Pure and Applied Physics, Vol. 8, Academic Press, New York-London, 1960. MR**0108217****[4]**T. J. BROMWICH,*An Introduction to the Theory of Infinite Series*, Macmillan, London, 1949.**[5]**R. C. Y. Chin and G. W. Hedstrom,*A dispersion analysis for difference schemes: tables of generalized Airy functions*, Math. Comp.**32**(1978), no. 144, 1163–1170. MR**0494982**, https://doi.org/10.1090/S0025-5718-1978-0494982-6**[6]**J. Albrecht and L. Collatz (eds.),*Numerische Behandlung von Differentialgleichungen. Band 3*, Internationale Schriftenreihe zur Numerischen Mathematik [International Series of Numerical Mathematics], vol. 56, Birkhäuser Verlag, Basel, 1981 (German). MR**784038****[7]**B. Fornberg,*On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation*, Math. Comp.**27**(1973), 45–57. MR**0395249**, https://doi.org/10.1090/S0025-5718-1973-0395249-2**[8]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[9]**James Glimm and Peter D. Lax,*Decay of solutions of systems of nonlinear hyperbolic conservation laws*, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I., 1970. MR**0265767****[10]**A. C. HINDMARSH, GEAR:*Ordinary Differential Equation System Solver*, Lawrence Livermore Laboratory Report UCID-30001, Rev. 1. A.C.C. No. 592, GEAR. Argonne Code Center, Building 221, Argonne National Laboratory, Argonne, Illinois.**[11]**Leon Lapidus and John H. Seinfeld,*Numerical solution of ordinary differential equations*, Mathematics in Science and Engineering, Vol. 74, Academic Press, New York-London, 1971. MR**0281355****[12]**R. D. RICHTMEYER & K. W. MORTON,*Difference Methods for Initial-Value Problems*, 2nd ed., Interscience, New York, 1967. MR**36**#3515.**[13]**I. J. SCHOENBERG, "Contributions to the approximation of equidistant data by analytic functions,"*Quart. Appl. Math.*, v. 4, 1946, pp. 45-99 and 112-141. MR**7**, 487 and**8**, 55.**[14]**S. I. Serdjukova,*The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations*, Ž. Vyčisl. Mat. i Mat. Fiz.**11**(1971), 411–424 (Russian). MR**0284018****[15]**Gilbert Strang,*The finite element method and approximation theory*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 547–583. MR**0287723****[16]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377****[17]**Blair Swartz and Burton Wendroff,*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**0239768**, https://doi.org/10.1090/S0025-5718-1969-0239768-7**[18]**Blair Swartz and Burton Wendroff,*The relation between the Galerkin and collocation methods using smooth splines*, SIAM J. Numer. Anal.**11**(1974), 994–996. MR**0362953**, https://doi.org/10.1137/0711077**[19]**Blair Swartz and Burton Wendroff,*The relative efficiency of finite difference and finite element methods. I. Hyperbolic problems and splines*, SIAM J. Numer. Anal.**11**(1974), 979–993. MR**0362952**, https://doi.org/10.1137/0711076**[20]**E. L. Allgower and M. M. Jeppson,*The approximation of solutions of nonlinear elliptic boundary value problems having several solutions*, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1972) Springer, Berlin, 1973, pp. 1–20. Lecture Notes in Math., Vol. 333. MR**0433923****[21]**Vidar Thomée and Burton Wendroff,*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SIAM J. Numer. Anal.**11**(1974), 1059–1068. MR**0371088**, https://doi.org/10.1137/0711081**[22]**R. VICHNEVETSKY & B. PEIFFER, "Error waves in finite element and finite difference methods for hyperbolic equations," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 1-6.**[23]**R. VICHNEVETSKY & F. DE SHUTTER, "A frequency analysis of finite difference and finite element methods for initial-value problems," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky, (ed.), Assoc. Int. Calcul Analogique, Ghent, Belgium, 1975, pp. 46-52.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
65N30

Retrieve articles in all journals with MSC: 65M10, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521280-5

Article copyright:
© Copyright 1979
American Mathematical Society