A collocation solver for mixed order systems of boundary value problems

Authors:
U. Ascher, J. Christiansen and R. D. Russell

Journal:
Math. Comp. **33** (1979), 659-679

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521281-7

MathSciNet review:
521281

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Implementation of a spline collocation method for solving boundary value problems for mixed order systems of ordinary differential equations is discussed.

The aspects of this method considered include error estimation, adaptive mesh selection, *B*-spline basis function evaluation, linear system solution and nonlinear problem solution.

The resulting general purpose code, COLSYS, is tested on a number of examples to demonstrate its stability, efficiency and flexibility.

**[1]**Uri Ascher,*Discrete least squares approximations for ordinary differential equations*, SIAM J. Numer. Anal.**15**(1978), no. 3, 478–496. MR**491701**, https://doi.org/10.1137/0715031**[2]**U. ASCHER, J. CHRISTIANSEN & R. D. RUSSELL,*A Collocation Solver for Mixed Order Systems of Boundary Value Problems*, Comp. Sci. Tech. Rep. 77-13, Univ. of British Columbia, 1977.**[3]**U. ASCHER & R. D. RUSSELL,*Evaluation of B-Splines for Solving Systems of Boundary Value Problems*, Comp. Sci. Tech. Rep. 77-14, Univ. of British Columbia, 1977.**[4]**Carl de Boor,*On calculating with 𝐵-splines*, J. Approximation Theory**6**(1972), 50–62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). MR**0338617****[5]**Carl de Boor,*Good approximation by splines with variable knots. II*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 12–20. Lecture Notes in Math., Vol. 363. MR**0431606****[6]**Carl de Boor,*Package for calculating with 𝐵-splines*, SIAM J. Numer. Anal.**14**(1977), no. 3, 441–472. MR**0428691**, https://doi.org/10.1137/0714026**[7]**Carl de Boor and Blâir Swartz,*Collocation at Gaussian points*, SIAM J. Numer. Anal.**10**(1973), 582–606. MR**0373328**, https://doi.org/10.1137/0710052**[8]**C. DE BOOR & R. WEISS,*Solveblok*:*A Package for Solving Almost Block Diagonal Linear Systems, with Applications to Spline Approximation and the Numerical Solution of Ordinary Differential Equations*, MRC TSR #1625, Madison, Wisconsin, 1976.**[9]**C. G. Broyden,*Recent developments in solving nonlinear algebraic systems*, Numerical methods for nonlinear algebraic equations (Proc. Conf., Univ. Essex, Colchester, 1969) Gordon and Breach, London, 1970, pp. 61–73. MR**0343586****[10]**R. BULIRSCH, J. STOER & P. DEUFLHARD,*Numerical Solution of Nonlinear Two-Point Boundary Value Problems*. I, Numer. Math. Handbook Series Approximation, 1976.**[11]**J. CERUTTI,*Collocation for Systems of Ordinary Differential Equations*, Comp. Sci. Tech. Rep. 230, Univ. Wisconsin-Madison, 1974.**[12]**J. Christiansen and R. D. Russell,*Error analysis for spline collocation methods with application to knot selection*, Math. Comp.**32**(1978), no. 142, 415–419. MR**0494963**, https://doi.org/10.1090/S0025-5718-1978-0494963-2**[13]**P. G. Ciarlet, M. H. Schultz, and R. S. Varga,*Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem*, Numer. Math.**9**(1966/1967), 394–430. MR**0221761**, https://doi.org/10.1007/BF02162155**[14]**James W. Daniel and Andrew J. Martin,*Numerov’s method with deferred corrections for two-point boundary-value problems*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1033–1050. MR**0464599**, https://doi.org/10.1137/0714071**[15]**J. E. Dennis Jr. and Jorge J. Moré,*Quasi-Newton methods, motivation and theory*, SIAM Rev.**19**(1977), no. 1, 46–89. MR**0445812**, https://doi.org/10.1137/1019005**[16]**Peter Deuflhard,*A relaxation strategy for the modified Newton method*, Optimization and optimal control (Proc. Conf., Oberwolfach, 1974) Springer, Berlin, 1975, pp. 59–73. Lecture Notes in Math., Vol. 477. MR**0501896****[17]**H.-J. Diekhoff, P. Lory, H.-J. Oberle, H.-J. Pesch, P. Rentrop, and R. Seydel,*Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting*, Numer. Math.**27**(1976/77), no. 4, 449–469. MR**0445845**, https://doi.org/10.1007/BF01399607**[18]**D. DODSON,*Optimal Order Approximation by Polynomial Spline Functions*, Ph. D. thesis, Purdue Univ., 1972.**[19]**R. ENGLAND, N. NICHOLS & J. REID,*Subroutine*D003AD, Harwell subroutine library, Harwell, England, 1973.**[20]**S. C. EISENSTADT, R. S. SCHREIBER & M. H. SCHULTZ,*Finite Element Methods for Spherically Symmetric Elliptic Equations*, Res. Rept. #109, Comp. Sci., Yale Univ., 1977.**[21]**Joseph E. Flaherty and R. E. O’Malley Jr.,*The numerical solution of boundary value problems for stiff differential equations*, Math. Comput.**31**(1977), no. 137, 66–93. MR**0657396**, https://doi.org/10.1090/S0025-5718-1977-0657396-0**[22]**P. W. Hemker,*A numerical study of stiff two-point boundary problems*, Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre Tracts, No. 80. MR**0488784****[23]**Elias Houstis,*A collocation method for systems of nonlinear ordinary differential equations*, J. Math. Anal. Appl.**62**(1978), no. 1, 24–37. MR**0488785**, https://doi.org/10.1016/0022-247X(78)90215-9**[24]**M. Lentini and V. Pereyra,*A variable order finite difference method for nonlinear multipoint boundary value problems*, Math. Comp.**28**(1974), 981–1003. MR**0386281**, https://doi.org/10.1090/S0025-5718-1974-0386281-4**[25]**M. Lentini and V. Pereyra,*An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers*, SIAM J. Numer. Anal.**14**(1977), no. 1, 94–111. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). MR**0455420**, https://doi.org/10.1137/0714006**[26]**J. B. McLeod and Seymour V. Parter,*On the flow between two counter-rotating infinte plane disks*, Arch. Rational Mech. Anal.**54**(1974), 301–327. MR**0349122**, https://doi.org/10.1007/BF00249193**[27]**H. J. PESCH & P. RENTROP,*Numerical Solution of the Flow between Two-Counter-Rotating Infinite Plane Disks by Multiple Shooting*, Rep. #7621, Technische Universität München, 1976.**[28]**P. Rentrop,*Numerical solution of the singular Ginzburg-Landau equations by multiple shooting*, Computing**16**(1976), no. 1-2, 61–67 (English, with German summary). MR**0408257**, https://doi.org/10.1007/BF02241980**[29]**Robert D. Russell,*Collocation for systems of boundary value problems*, Numer. Math.**23**(1974), 119–133. MR**0416074**, https://doi.org/10.1007/BF01459946**[30]**R. Russell,*Efficiencies of 𝐵-spline methods for solving differential equations*, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 599–617. Congressus Numerantium, No. XVI. MR**0405871****[31]**Robert D. Russell,*A comparison of collocation and finite differences for two-point boundary value problems*, SIAM J. Numer. Anal.**14**(1977), no. 1, 19–39. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). MR**0451745**, https://doi.org/10.1137/0714003**[32]**R. D. Russell and J. Christiansen,*Adaptive mesh selection strategies for solving boundary value problems*, SIAM J. Numer. Anal.**15**(1978), no. 1, 59–80. MR**0471336**, https://doi.org/10.1137/0715004**[33]**R. D. Russell and L. F. Shampine,*A collocation method for boundary value problems*, Numer. Math.**19**(1972), 1–28. MR**0305607**, https://doi.org/10.1007/BF01395926**[34]**R. D. Russell and L. F. Shampine,*Numerical methods for singular boundary value problems*, SIAM J. Numer. Anal.**12**(1975), 13–36. MR**0400723**, https://doi.org/10.1137/0712002**[35]**Melvin R. Scott and Herman A. Watts,*Computational solution of linear two-point boundary value problems via orthonormalization*, SIAM J. Numer. Anal.**14**(1977), no. 1, 40–70. Papers on the numerical solution of two-point boundary-value problems (NSF-CBMS Regional Res. Conf., Texas Tech Univ., Lubbock, Tex., 1975). MR**0455425**, https://doi.org/10.1137/0714004**[36]**M. L. SCOTT & H. A. WATTS, "A systematized collection of codes for solving twopoint boundary-value problems," in*Numerical Methods for Differential Systems*, Academic Press, New York, 1976, pp. 197-227.**[37]**J. M. Varah,*Alternate row and column elimination for solving certain linear systems*, SIAM J. Numer. Anal.**13**(1976), no. 1, 71–75. MR**0411199**, https://doi.org/10.1137/0713008**[38]**K. A. Wittenbrink,*High order projection methods of moment- and collocation-type for nonlinear boundary value problems*, Computing (Arch. Elektron. Rechnen)**11**(1973), no. 3, 255–274 (English, with German summary). MR**0400724**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521281-7

Article copyright:
© Copyright 1979
American Mathematical Society