On Stable Calculation of Linear Functionals

By Sven-Åke Gustafson

Abstract. In this paper we discuss the recurrent task of evaluating a linear functional defined by (generally infinitely many) linear constraints. We develop a theory for the stability of this problem and suggest a regularization procedure, based on orthogonal expansions. Simple and efficient computational schemes for evaluating the functional numerically are given.

1. Calculation of Linear Functionals from Moment Conditions. We start by discussing the introductory

Example. $b \in C[0,1]$, i.e. b is a continuous function over $[0,1]$. Introduce the maximum norm on $C[0,1]$. Let L be a bounded linear functional. Consider the problem

(1) Compute $L(b)$ when

(2) $L(a_r) = c_r$, \quad $r = 1, 2, \ldots$,

where $a_r(t) = t^{r-1}$.

As a particular instance of the problem (1) and (2) we take

(3) $L(b) = \int_0^1 b(t)\ln(t^{-1}) dt$.

Then

$c_r = L(a_r) = r^{-2}$, \quad $r = 1, 2, \ldots$.

We shall call (2) moment conditions.

Lemma 1. Use the same notations and assumptions as in Example 1. Then $L(b)$ is uniquely determined by the sequence $c_r = L(a_r)$, $r = 1, 2, \ldots$.

Proof. Let b_n be the polynomial of degree less than n which approximates b best in the maximum norm. b_n is uniquely determined and $\|b - b_n\| \to 0$ when $n \to \infty$. Hence $L(b) = \lim_{n \to \infty} L(b_n)$, and the conclusion follows. Q.E.D.

However, by practical calculations c_r are known only with a finite accuracy and only finitely many of the conditions (2) may be taken into account. Hence, a certain error is introduced in the calculated value of $L(b)$ which is determined by approximating b (directly or indirectly) with linear combinations of a_1, a_2, \ldots, a_n. The purpose of this paper is to extend and generalize the results in [6] and [7] as well as to de-
scribe efficient computational schemes for evaluating $L(b)$ and assessing the associated error.

Definition 1. Let S be a fixed set, $F(S)$ the linear space of real-valued functions, defined on S. Thus, if $f, f_1 \in S$ and α is a real number, we define as usual $f + f_1$ and $\alpha \cdot f$ through

$$(f + f_1)(s) = f(s) + f_1(s); \quad (\alpha f)(s) = \alpha f(s), \quad s \in S.$$

If $a_r \in F(s)$, $r = 1, 2, \ldots, n$, we denote by a the vector-valued function whose value $a(s)$, $s \in S$, is given by the column vector with components $a_r(s)$, $r = 1, 2, \ldots, n$. If L is a linear functional defined on $F(S)$, we write $L(a)$ for the column vector with components $L(a_r)$, $r = 1, 2, \ldots, n$. Thus, $L(a) \in \mathbb{R}^n$, the n-dimensional Euclidean space.

Lemma 2. Let a_1, a_2, \ldots, a_n, b and L be as in Definition 1 and let b be a linear combination of a_1, a_2, \ldots, a_n,

$$(4) \quad b(s) = y^T a(s), \quad s \in S,$$

(where $y \in \mathbb{R}^n$ and superscript T as usual denotes transposition). Put

$$(5) \quad L(a) = c.$$

Then

$$L(b) = c^T y.$$

Proof.

$$c^T y = y^T c = y^T (L(a)) = L(y^T a) = L(b).$$

Q.E.D.

Remark. For examples and computational applications of Lemma 2 see [6] and [8]. In the special case when S is a finite set, $S = \{s_1, s_2, \ldots, s_N\}$, the functions a_r may be represented as vectors in \mathbb{R}^N. Since $L(a_r)$ then may be represented in the form of scalar products, (5) takes the form of linear systems of equations.

We next establish a more general result.

Theorem 1. S, a_1, a_2, \ldots, a_n and L are as in Definition 1. $b \in F(S)$ and $y \in \mathbb{R}^n$. Introduce e in $F(S)$ through

$$(6) \quad y^T a = b + e.$$

Let further c, δ in \mathbb{R}^n satisfy

$$(7) \quad L(a) = c + \delta.$$

Then

$$(8) \quad c^T y - L(b) = L(e) - \delta^T y.$$

Proof.

$$c^T y - L(b) = y^T c - L(y^T a - e) = y^T (c - L(a)) + L(e) = L(e) - \delta^T y.$$

Q.E.D.

The rest of the paper will be based on Theorem 1. We demonstrate first how it can be used to derive bounds on $L(b)$, provided e and L meet certain further conditions.
Definition 2. L is called a nonnegative linear functional ($L \geq 0$), if $f(s) \geq 0$, $s \in S$, implies $L(f) \geq 0$.

Corollary 1. Use the same notations as in Theorem 1 and require further that $\delta = 0$ and $L \geq 0$. Then

$$y^1T_a(s) \leq b(s) \leq y^2T_a(s), \quad s \in S,$$

implies

$$(9) \quad y^1T_c \leq L(b) \leq y^2T_c.$$

Further put $v_1 = \sup L(b)$ over all $L \geq 0$ such that $L(a) = c$ and $v_2 = \inf c^Ty$ over all $y \in \mathbb{R}^n$ such that $y^T_a(s) \geq b(s), s \in S$, then

$$(10) \quad v_1 \leq v_2.$$

Proof. With $\delta = 0$, (8) entails $L(b) = c^Ty - L(e)$. Since $L \geq 0$, $L(b) \leq c^Ty$, if $y^T_a(s) \geq b(s), s \in S$, while $y^T_a(s) \leq b(s)$ implies $L(b) \geq c^Ty$. Thus (9) and (10) follow. Q.E.D.

Remark. (9) may be used to find bounds for $L(b)$. See [7]. (10) is a slight generalization of the duality lemma of semi-infinite programming, [4, Chapter II] and [10]. If S is a finite set, then (10) coincides with the duality inequality of linear programming. The conditions of Corollary 1 can generally not be met in practice, since the exact values of c_r cannot be represented in the computer. Thus, we arrive at the more general result.

Corollary 2. Use the same notations as in Theorem 1. Put $b_n = y^Ta$ and let the linear functional L satisfy $La = c$. Let further $u > 0$ be a given (small) number and let \bar{c}_r be such that

$$|\bar{c}_r - c_r| \leq u |c_r|, \quad r = 1, 2, \ldots,$$

then

$$(11) \quad |L(b_n) - y^Tc| \leq u \sum_{r=1}^n |y_r c_r| \leq u \max_{1 \leq r \leq n} |c_r| \sum_{r=1}^n |y_r|.$$

Proof. Put $\epsilon = 0$ and $|\delta_r| \leq u |c_r|$ in (8). Q.E.D.

Definition 3. Use the notations of Corollary 2 and put for $y^Tc \neq 0$,

$$\kappa_n = \sum_{r=1}^n |y_r c_r|/ |y^Tc|.$$

We shall call κ_n the condition number of the problem to evaluate $L(b_n)$ from $L(a) = c$.

Remark. $\kappa_n u$ is an upper bound for the relative error in the value of $L(b_n)$ caused by a relative error in the components of c_r, bounded by u. However, we shall be interested in comparing various sequences $\{b_n\}$, of approximations to a fixed b. When $L(b)$, L given is sought, then it turns out to be simpler to use
as a measure of stability. We have namely \(k_n |y^T e| \leq k_n \); and hence, \(k_n u \) is a bound for the absolute error in \(L(b_n) \) caused by a relative error in the components \(c_r \), bounded by \(u \). When we want to determine \(L(b) \) for a general \(b \), we first approximate \(b \) by \(b_n \). Combining (8) with Corollary 2 and setting \(e = b_n - b \), we get

\[
|c^T y - L(b)| \leq |L(b_n - b)| + u \cdot k_n.
\]

If we select a sequence of functions \(b_n, n = 1, 2, \ldots \), such that \(L(b_n - b) \to 0 \) when \(n \to \infty \), we achieve that the first term of the right-hand side of (13) decreases with \(n \). However, \(k_n \) often increases with \(n \) and hence there is an optimal value, \(n = n_0 \), for which the right-hand side assumes its minimum value. \(n_0 \) depends on \(b \), the approximating sequence \(b_1, b_2, \ldots \) and \(u \). We shall illustrate this fact on some simple but important problems in Section 2.

2. Stability of Some Convergence Acceleration Formulas. In this section we treat the problem: Let \(L \) be a bounded linear functional on \(C[0, 1] \) when this space is equipped with the maximum norm. Put \(c_r = L(a_r) \) for \(a_r(s) = s^r, r = 0, 1, \ldots \). Compute for complex \(z \)

\[
F(z) = \sum_{r=0}^{\infty} c_r(-z)^r
\]

using \(c_0, c_1, \ldots \) as input data. As explained in [9] this problem can be cast into the form: Compute

\[
F(z) = L(f(z, \cdot))
\]

for

\[
L(a_r) = c_r, \quad r = 0, 1, \ldots, \quad f(z, s) = (1 + sz)^{-1}.
\]

Here (15) furnishes the analytic continuation of the function (14) to all \(z \) outside the set defined by \(z \) real and \(z \leq -1 \).

We investigate the stability of the convergence acceleration methods in Sections 2 and 3 of [9] and prove

Theorem 2. Let \(b_n \) be the polynomial of degree \(n - 1 \) obtained by developing \((1 + zs)^{-1}\) in a Taylor expansion around \(s = t \) and retaining the first \(n \) terms. Put \(B = |z|(1 + |t|)/|1 + zt| \). Then the condition number \(k_n \) of (13) has the properties

- \(k_n /B^n \) is bounded for \(n > 1 \), if \(B > 1 \),
- \(k_n /n \) is bounded for \(n > 1 \), if \(B = 1 \),
- \(k_n \) is bounded for \(n > 1 \), if \(B < 1 \).

Proof.

\[
b_n(s) = \sum_{r=0}^{n-1} y_r s^r = (1 + tz)^{-1} \sum_{r=0}^{n-1} \left\{ \frac{z(t - s)}{1 + tz} \right\}^r.
\]
Thus

\[
\sum_{r=0}^{n-1} |y_r| \leq \frac{1}{|1 + tz|} \sum_{r=0}^{n-1} B^r,
\]

and hence,

\[
(17) \quad k_n \leq \frac{\max_{0 \leq r \leq n-1} |c_r|}{|1 + tz|} \left(1 + B + \cdots + B^{n-1}\right)
\]

establishing the desired result, since \(c_r \) is bounded, \(r \geq 1 \). Q.E.D.

Remark. It may be of interest to compare the accuracy of the results reported in Table 2 of [9] with the estimates for \(k_n \) obtainable from Theorem 2. Thus \(t = 1, z = 1 \) gives \(B = 1 \), and by (17) \(k_n \leq 0.5n \max_{0 \leq r \leq n-1} |c_r| \) in this case (Euler transformation), \(t = 1, z = 10 \) gives \(B = 20/11 \) (generalized Euler transformation), and \(t = 1/2, z = 10 \) gives \(B = 5/2 \). The bounds for \(k_n \) are sufficiently large to explain the observed loss in accuracy in our estimate of \(P(z) \) for \(z = 10 \). For each \(n \) the bound for \(k_n \) is somewhat smaller for \(t = 1 \) than for \(t = 1/2 \). However, for \(t = 1 \) the optimal \(n \)-value is \(n = 30 \) but for \(t = 1/2 \) it is \(n = 20 \) and the corresponding values of \(k_n \) for optimal \(n \) turn out to be of the same magnitude.

We next study the stability of the Čebyšev acceleration, which is described in [9, Section 3]. For this purpose we need

Lemma 3. Let the function \(g \) satisfy \((-1)^k g^{(k)}(s) > 0, k = 0, 1, \ldots \) for \(s \in [0, 1] \) and let \(Q(s) = \sum_{i=0}^{n-1} y_i s^i \), interpolate \(g \) at \(t_1, t_2, \ldots, t_n \) where \(0 < t_1 < t_2 < \cdots < t_n \). Then

\[
\sum_{r=0}^{n-1} |y_r| = Q(-1).
\]

Further, if also \((-1)^k g^{(k)}(s) > 0, k = 0, 1, \ldots, s \in [-1, 1] \), then \(Q(-1) \leq g(-1) \).

Remark. \(g(s) = (1 + st)^{-1}, t > 0, \) and \(g(s) = e^{-s} \) are examples of functions satisfying the assumptions in Lemma 3.

Proof. According to Newton's formula with divided differences we can write

\[
Q(s) = d_0 + (s - t_1)d_1 + (s - t_1)(s - t_2)d_2 + \cdots + (s - t_1) \cdots (s - t_{n-1})d_{n-1},
\]

where \(d_0 = g(t_1), d_1 = g(t_1, t_2), \ldots, d_{n-1} = g(t_1, t_2, \ldots, t_n) \). As known, there is a \(\xi_k \in (0, 1) \) such that \(k!d_k = g^{(k)}(\xi_k) \). Hence \((-1)^k d_k > 0, k = 0, 1, \ldots, n-1 \). Rewriting \(Q \) in power form, we get an expression

\[
Q(s) = \sum_{r=0}^{n-1} y_r s^r \quad \text{with} \quad y_r = (-1)^r h_r, \ h_r > 0.
\]

Thus

\[
Q(-1) = \sum_{r=0}^{n-1} |y_r|,
\]

proving the first assertion. Newton's interpolation formula with remainder gives
\[g(-1) = Q(-1) + \frac{g^{(n)}(\xi)}{n!} \prod_{i=1}^{n} (-1 - t_i), \]

where \(\xi \in [-1, 1] \). Since \((-1)^{n}g^{(n)}(\xi) > 0\) and \(t_i \in [0, 1] \), we get \(Q(-1) \leq g(-1) \). Q.E.D.

Lemma 4. Put \(g(t) = (1 + z| - |z| + t|z|)^{-1} \), \(h(t) = (1 + zt)^{-1} \) where \(\text{Re}(z) > - \frac{1}{2} \), and let \(0 \leq t_1 < t_2 < \cdots < t_n \leq 1 \) be fixed points. Then the divided differences satisfy

\[|h(t_1, t_2, \ldots, t_k)| \leq (-1)^{k-1}g(t_1, t_2, \ldots, t_k), \quad k = 1, 2, \ldots, n. \]

Further if

\[Q(s) = \sum_{r=0}^{n-1} y_r s^r, \quad R(s) = \sum_{r=0}^{n-1} w_r s^r \]

interpolate \(g \) and \(h \) respectively at \(t_1, t_2, \ldots, t_n \), then

\[\sum_{r=0}^{n-1} |w_r| \leq \sum_{r=0}^{n-1} |y_r|. \]

Proof. We have

\[h(t_1, t_2, \ldots, t_k) = (-z)^{k-1} \prod_{i=1}^{k} (1 + zt_i)^{-1}, \]

\[g(t_1, t_2, \ldots, t_k) = (-1)^{k-1} |z|^{k-1} \prod_{i=1}^{k} (1 + z|1 - |z| + t_i|z|)^{-1}. \]

For \(\text{Re}(z) > - \frac{1}{2}, |1 + z| > |z| \). Hence by (20), \((-1)^{k-1}g(t_1, t_2, \ldots, t_k) > 0\). Since \(|z|(|1 + z| - |z| + t_i|z|)^{-1} \geq |z|(1 + zt_i)^{-1} \), (18) follows. In order to verify (19) we express \(Q \) and \(R \) by means of Newton's formula with divided differences and evaluate \(y_r \) and \(w_r \). Then the conclusion follows as in Lemma 3. Q.E.D.

We may now prove

Theorem 3. Let \(Q_n = \sum_{r=0}^{n-1} y_r t^r \) be the polynomial of degree less than \(n \) which interpolates \((1 + zt)^{-1}\) at the zeros of \(T_n^* \) where \(T_n^* \) is the shifted Čebyshev polynomial of degree \(n \) defined by \(T_n^*(x) = T_n(2x - 1) \). Here \(T_n \) is the usual Čebyshev polynomial of degree \(n \). See [2]. Then

\[\sum_{r=1}^{n} |y_r| < (1 - z)^{-1}, \quad \text{if } z \text{ real and } z \in (0, 1), \]

\[\sum_{r=1}^{n} |y_r| < (1 + z|1 - |z|)|^{-1}, \quad \text{if } |z - 1/3| < 2/3. \]

Thus, if \(z \) meets the requirements indicated in (21) or (22), then the condition number \(k_n \) of the Čebyshev-acceleration in Section 3 of [9] remains bounded for all \(n \).

Proof. If \(z \in [0, 1] \), then \((1 + zt)^{-1}\) meets the assumptions of Lemma 3 and (21) holds. (22) is established by Lemma 4, since if \(|z - 1/3| < 2/3\), then \(\text{Re}(z) > -1/3 \). Thus, we may replace \((1 + zt)^{-1}\) by \((1 + z|1 - |z| + t|z|)^{-1}\) and apply Lemma 3 to that function, and the conclusion follows. Q.E.D.
Remark. If \(z \) real and \(z > 1 \), we may still apply Lemma 3 to find \(\sum_{r=1}^{n} |y_r| = Q_n(-1) \), where \(Q_n \) is defined as in Theorem 3. Using the recurrence relation for \(T^*_n \) we establish as in Section 3 of [9] that \(Q_n(-1) \) increases exponentially with \(n \). If \(z \) is complex but does not meet the condition associated with (22), we get the inequality
\[
\sum_{r=1}^{n} |y_r| \geq |Q_n(-1)|,
\]
which gives lower bounds for the condition number. These are exponentially growing with \(n \), if \(\max(\lambda_1, \lambda_2) > 1 \) where \(\lambda_1 = |12z^{-1} + 1 + 2\sqrt{z^{-2} + z^{-1}}|, \lambda_2 = 1/\lambda_1 \).
Compare [9, Section 3]. Thus Theorems 2 and 3 are consistent with the numerical results reported in [9] which indicated the existence of an optimal \(n \) of modest magnitude giving the best estimate of \(L(b) \) in (13).

Definition 4. Let \(F(S) \) be as in Definition 1 and let \(da \) be a nonnegative measure over \(S \). We denote by \(L^2_\alpha(S) \) the space of functions which are square-integrable over \(S \) with respect to \(da \) and equipped with the scalar product
\[
\langle f, g \rangle = \int_S f(s)g(s)da(s)
\]
for \(f, g \) in \(L^2_\alpha(S) \) and the norm given by \(\| f \|_2 = \langle f, f \rangle \). The functions \(a_1, a_2, \ldots, a_n \) are said to be linearly independent in \(L^2_\alpha(S) \), if \(\| \sum_{r=1}^{n} z_r a_r \|_2 = 0 \) implies \(z_1 = z_2 = \ldots = z_n = 0 \).

We prove

Lemma 5. Let \(a_1, a_2, \ldots, a_n \) be an orthonormal system in \(L^2_\alpha(S) \) and put
\[
(b_n) = y^T a \quad \text{with} \quad y_r = \langle b_n, a_r \rangle.
\]
Then
\[
\sum_{r=1}^{n} |y_r| \leq \sqrt{n} \| b_n \|_2.
\]

Proof. Since \(a_1, a_2, \ldots, a_n \) are orthonormal, \(y^T y = \| b_n \|_2^2 \). Next maximize \(\sum_{r=1}^{n} |y_r| \) under the condition \(y^T y = \| b_n \|_2^2 \) and (24) follows. Q.E.D.

Thus, \(k_n \) increases at most as \(\sqrt{n} \), if \(a_1, a_2, \ldots, a_n \) meet the conditions of Lemma 5. Consider again the problem:

Estimate \(L(b) \) when \(L(a_r) = c_r, r = 1, 2, \ldots, n \), are given numerically and \(a_1, a_2, \ldots, a_n \) are linearly independent in the sense of Definition 4 for a certain measure \(da \). In view of Lemma 5 it may be advantageous first to orthogonalize \(a_1, a_2, \ldots, a_n \) in a preliminary step and then approximate \(L(b) \) with \(L(b_n) \). This type of stabilization of a problem is often advantageous. See [3, Chapter 1]. If this orthogonalization must be carried out numerically for a general system, then the modified Gram-Schmidt method [1] should be used in order to secure numerical stability of the transformation.

We describe now how to perform the transformation in the important case when \(S \) is a real interval and \(a_r(s) = s^{r-1} \). Then we select \(da \) such that the corresponding system \(q_0, q_1, \ldots \), of orthogonal polynomials has a three-term recurrence relation.
STABLE CALCULATION OF LINEAR FUNCTIONALS

with coefficients u_r, v_r, which are known as analytic expressions,

\begin{align}
q_0(s) &= 1, \quad q_1(s) = s - u_1, \\
q_n(s) &= (s - u_n)q_{n-1}(s) - v_nq_{n-2}(s), \quad n = 2, 3, \ldots.
\end{align}

(The so-called classical orthogonal families: Jacobi, Hermite, Laguerre, etc., meet these requirements.) Afterwards, we normalize q_0, q_1, \ldots by putting

\begin{equation}
ear_r = w_rq_{r-1},
\end{equation}

where the constant w_r is determined (analytically) to render $\|e_r\| = 1$. There is a discrete measure $d\alpha_n$,

\begin{equation}
\int_S f(s) \, d\alpha_n(s) = \sum_{i=1}^n m_{ni}f(s_{ni})
\end{equation}

such that $m_{in} > 0, i = 1, 2, \ldots$, and

\begin{equation}
\int_S e_j(s)e_k(s) \, d\alpha_n(s) = \delta_{jk}, \quad 1 \leq j \leq k < n.
\end{equation}

m_{ni} and s_{ni} are weights and abscissae in the n-point Gaussian quadrature rule corresponding to the measure $d\alpha$ and are efficiently calculated using the computer codes in [5]. (29) follows from the relation

\begin{equation}
\delta_{jk} = \int_S e_j(s)e_k(s) \, d\alpha(s) = \sum_{i=1}^n m_{ni}e_j(s_{ni})e_k(s_{ni}) = \int_S e_j(s)e_k(s) \, d\alpha_n(s),
\end{equation}

which is valid since the n-point Gaussian rule gives an exact result for polynomials of degree $2n - 1$ or less.

We next determine Lq_r which is done by means of the recurrence relations (25), (26). Put $f_{kr}(s) = s^kq_r(s)$ $l_{kr} = L(f_{kr})$. We first calculate the auxiliary entities l_{kr} for $k + r < n$, $k = 0, 1, \ldots, n-1$. (25), (26) give the relationships

\begin{align}
l_{k,0} &= c_{k+1}, \quad k = 0, 1, \ldots, \\
l_{k,1} &= c_{k+2} - u_1c_{k+1}, \quad k = 0, 1, \ldots, \\
l_{k,n} &= l_{k+1,n-1} - u_nl_{k,n-1} - v_nl_{k,n-2}, \quad n = 2, 3, \ldots.
\end{align}

We arrange the numbers $l_{k,n}$ in a triangular array

\begin{align}
&l_{0,0} \\
l_{0,1} & \quad l_{0,2} \\
l_{1,0} & \quad l_{1,1} \\
l_{1,1} & \quad \ldots \\
l_{2,0} & \quad l_{1,2} \\
l_{2,1} & \quad \ldots \\
&l_{3,0} \quad \ldots
\end{align}
By (27), \(L(e_r) = w_r L(q_{r-1}) = w_r L_{0,r-1}, \) \(r = 1, 2, \ldots, n. \) The desired elements \(l_{0,r} \) appear in the top of the columns of the array (33). The numbers \(l_{k,r} \) are calculated along ascending diagonals, i.e. in the order \(l_{0,0}, l_{1,0}, l_{0,1}, l_{2,0}, l_{1,1}, l_{0,2}, \ldots. \) Then, it follows from (30), (31), (32) that in order to calculate the elements in a certain ascending diagonal one needs access only to the two preceding diagonals. Hence, it is not necessary to store the entire array (33) simultaneously. In total about \(n^2 \) addition/subtractions and about \(n^2 \) multiplications are required for determining \(L(e). \)

Next we put \(b_n = y^T e, \) where \(y \) is the optimal solution of

\[
\min_{z \in \mathbb{R}^n} \int_S \left[(b(s) - z^T e(s))^2 \right] d\alpha_n(s).
\]

If we take \(z^T e \) as the unique polynomial of degree \(n \) which interpolates \(b \) at the zeros \(s_{ni} \) of \(e_n, \) then by (28) the integral (34) assumes the value 0; and hence, this \(z^T e \) is optimal. But as known, the unique optimal solution of the least-squares problem (34) is given by \(z = y, \) where

\[
y_r = \int_S b(s)e_r(s) d\alpha_n(s) = \sum_{i=1}^n m_{ni} b(s_{ni}) e_r(s_{ni}).
\]

The calculation of \(y \) requires about \(n^2 \) multiplications and the same number of additions. Now to determine \(L(b_n) \) only the computation of a further scalar product is called for.

Remark. If \(n \) is increased, \(d\alpha_n \) is changed and most of the work including calculating functional values \(b(s_{ni}) \) must be redone from scratch.

We next discuss the case when \(S \) is a bounded interval, and we shall assume that by a linear transformation it has been transformed into the standard interval \([-1, 1]\). Then it is often suggested to take \(b_n \) as the polynomial of degree \(< n \) which interpolates \(b \) at the zeros of the Čebyšev polynomial of degree \(n, T_n(x). \) See, e.g., [3], [12] and [14]. Then

\[
s_{ni} = \cos \left(\frac{i - \frac{1}{2}}{n} \pi \right), \quad m_{ni} = \pi/n.
\]

If the cost to evaluate \(b(s_{ni}) \) is great in comparison to an arithmetic operation and it is not known which \(n \)-value is finally accepted, then one wants to avoid discarding previously calculated functional values. In this situation [11] suggests that one should start with an odd \(n \)-value, advance \(n \) according to

\[
n_{\text{new}} = 2 \cdot n_{\text{old}} + 1
\]

and select \(s_{ni} \) as the zeros of \(U_n, \) the \(n \)th degree Čebyšev polynomial of the second kind. Thus,

\[
s_{ni} = \cos \left(\frac{ni}{n+1} \right), \quad m_{ni} = \frac{1}{n+1} \sin^2 \left(\frac{ni}{n+1} \right).
\]

From (37) we find that when \(n \) is advanced according to (36), all earlier computed functional values are retained.
It is known, that if \(b \) may be continued analytically to an ellipse in the complex plane with foci at +1 and -1, \(s_{n1} \) are given by (35) and \(b_n \) is the polynomial of degree < \(n \) which interpolates \(b \) at \(s_{n1} \), then

\[
|b(s) - b_n(s)| \leq A\lambda^n,
\]

where \(A \) and \(\lambda \) are constants and \(\lambda < 1 \). But if \(s_{n1} \) are given by (36), then we get a bound

\[
|b(s) - b_n(s)| \leq nA_0\lambda^n,
\]

where \(A_0 \) is another constant and \(\lambda \) has the same value as in (37). See [11]. A special case occurs in the Čebyšev acceleration scheme treated in Section 2 and in [9]. The bounds (38) and (39) are easily established by means of a straightforward application of Cauchy’s integral formula.

Let \(\Delta \) be a bound for the magnitude of the absolute error in the value of \(c_r \). If \(q_n(t) = z^n t^n \) for some \(z \in \mathbb{R}^n \), then the resulting error in \(L(q_n) \) is bounded by \(\Delta \sum_{r=1}^{n} |z_r| \). We may derive simple expressions for this bound for \(q_n = T_n \) and \(q_n = U_n \) by means of:

Lemma 6. Let \(t_n \) and \(u_n \) denote the sums of the absolute values of the coefficients of \(T_n \) and \(U_n \), the \(n \)th degree Čebyšev polynomials of first and second kind. Then

\[
t_n = \frac{1}{2} \left[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right],
\]

\[
u_n = \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1} \right].
\]

Proof. It is well known that

\[
T_n(z) = \frac{1}{2} \left((z + \sqrt{2} - 1)^n + (z - \sqrt{2} - 1)^n \right),
\]

\[
U_n(z) = \frac{1}{2\sqrt{2} - 1} \left((z + \sqrt{2} - 1)^{n+1} - (z - \sqrt{2} - 1)^{n+1} \right).
\]

Since \(t_n = |T_n(t)| \) and \(u_n = |U_n(t)| \), the stated result follows immediately. Q.E.D.

Remark. The result for \(t_n \) is also given in [13, p. 792, Eq. (14)]. We treat also the case \(S = [0, 1] \). Then we use the shifted Čebyšev polynomials \(T^*_n \) and \(U^*_n \) defined by \(T^*_n(x) = T_n(2x - 1) \) and \(U^*_n(x) = U_n(2x - 1) \). See e.g. [9]. Lemma 6 is replaced by

Lemma 7. Let \(t^*_n \) and \(u^*_n \) denote the sums of the absolute values of the coefficients of \(T^*_n \) and \(U^*_n \). Then

\[
t^*_n = \frac{1}{2} \left[(1 + \sqrt{2})^{2n} + (1 - \sqrt{2})^{2n} \right],
\]

\[
u^*_n = \frac{1}{4\sqrt{2}} \left[(1 + \sqrt{2})^{2n+2} + (1 - \sqrt{2})^{2n+2} \right].
\]

Proof. Use the fact that \(T^*_n(x^2) = T_{2n}(x) \) and \(2 \times U^*_n(x^2) = U_{2n+1}(x) \). Q.E.D.
Remark. It is apparent from the above that if \(b_n = \sum_{r=1}^{n} y_r T_{r-1} \), the error in \(L(b_n) \) computed with \(L(a), a_r(s) = s^{r-1} \) as input data depends on how rapidly \(y_r \) decreases with \(r \). We have namely

\[
L(b_n) = \sum_{r=1}^{n} y_r L(T_{r-1}),
\]

and the errors in the calculated values of \(L(T_{r-1}) \) are bounded by a quantity of the form \(A(1 + \sqrt{2}r) \) where \(A \) is a constant.

Also, if the relative error in the calculated value of \(L(T_r) \) is greater than 100\% we might as well put \(L(T_r) = 0 \) since this value is consistent with given data and associated error bounds. In this situation, the addition of more moments \(c_r \) does not improve upon our estimate of \(L(b) \).

Computing Research Group
The Australian National University
P. O. Box 4
Canberra A.C.T. 2600, Australia