Quadrature rule methods for Volterra integral equations of the first kind

Author:
Charles J. Gladwin

Journal:
Math. Comp. **33** (1979), 705-716

MSC:
Primary 65R20; Secondary 65D32

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521284-2

MathSciNet review:
521284

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new class of quadrature rule methods for solving nonsingular Volterra integral equations of the first kind are introduced; these methods are based on an appropriate modification of the higher-order Newton-Gregory methods which are known to be divergent. Methods up to order six are constructed explicitly and illustrated with numerical examples.

**[1]**H. Brunner,*The solution of Volterra integral equations of the first kind by piecewise polynomials*, J. Inst. Math. Appl.**12**(1973), 295–302. MR**0329290****[2]**W. A. Coppel,*Stability and asymptotic behavior of differential equations*, D. C. Heath and Co., Boston, Mass., 1965. MR**0190463****[3]**R. J. Duffin,*Algorithms for classical stability problems*, SIAM Rev.**11**(1969), 196–213. MR**0249740**, https://doi.org/10.1137/1011034**[4]**R. A. FUCHS & V. I. LEVIN,*Functions of a Complex Variable and Some of Their Applications*, Vol. II, Pergamon Press, Oxford, 1961.**[5]**C. J. Gladwin and R. Jeltsch,*Stability of quadrature rule methods for first kind Volterra integral equations*, Nordisk Tidskr. Informationsbehandling (BIT)**14**(1974), 144–151. MR**0502108****[6]**C. J. GLADWIN,*Numerical Solution of Volterra Integral Equations of the First Kind*, Ph.D. thesis, Dalhousie University, 1975.**[7]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[8]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[9]**Mituo Kobayasi,*On numerical solution of the Volterra integral equations of the first kind by trapeziodal rule*, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.**14**(1967), no. 2, 1–14. MR**0260221****[10]**John J. H. Miller,*On the location of zeros of certain classes of polynomials with applications to numerical analysis*, J. Inst. Math. Appl.**8**(1971), 397–406. MR**0300435****[11]**W. Pogorzelski,*Integral equations and their applications. Vol. I*, Translated from the Polish by Jacques J. Schorr-Con, A. Kacner and Z. Olesiak. International Series of Monographs in Pure and Applied Mathematics, Vol. 88, Pergamon Press, Oxford-New York-Frankfurt; PWN-Polish Scientific Publishers, Warsaw, 1966. MR**0201934****[12]**Anthony Ralston,*A first course in numerical analysis*, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR**0191070****[13]**R. WEISS,*Numerical Procedures for Volterra Integral Equations*, Ph.D. thesis, The Australian National University, Canberra, 1972.

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
65D32

Retrieve articles in all journals with MSC: 65R20, 65D32

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521284-2

Keywords:
Quadrature rule methods,
Volterra integral equations of the first kind

Article copyright:
© Copyright 1979
American Mathematical Society