The Hankel power sum matrix inverse and the Bernoulli continued fraction

Author:
J. S. Frame

Journal:
Math. Comp. **33** (1979), 815-826

MSC:
Primary 65F30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521297-0

MathSciNet review:
521297

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Hankel power sum matrix (where *V* is the Vandermonde matrix) has (*i, j*)-entry , where . In solving a statistical problem on curve fitting it was required to determine so that for all eigenvalues of would be less than 1. It is proved, after calcu lating by first factoring *W* into easily invertible factors, that suffices. As by-products of the proof, close approximations are given for the Hilbert determinant, and a convergent continued fraction with *m*th partial denominator is found for the divergent Bernoulli number series .

**[1]**W. A. Al-Salam and L. Carlitz,*Some determinants of Bernoulli, Euler and related numbers*, Portugal. Math.**18**(1959), 91–99. MR**0123523****[2]**J. S. Frame,*The solution of equations by coninued fractions*, Amer. Math. Monthly**60**(1953), 293–305. MR**0056369****[3]**J. S. Frame,*Bernoulli numbers modulo 27000*, Amer. Math. Monthly**68**(1961), 87–95. MR**0124272**, https://doi.org/10.2307/2312467**[4]**D. C. GILLILAND & JAMES HANNAN,*Detection of Singularities in the Countable General Linear Model*, Department of Statistics, Michigan State University, RM-217, DCG-8, JH-10, Aug. 1971.**[5]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[6]**N. E. NÖRLUND,*Vorlesung über Differenzenrechnung*, Springer, Berlin, 1924, p. 18.**[7]**G. M. Phillips and P. J. Taylor,*Theory and applications of numerical analysis*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1973. MR**0343523****[8]**T. J. STIELTJES, "Sur quelques intégrales définies et leur dévéloppement en fractions continues,"*Oeuvres Complètes*, vol. 2, P. Noordhoff, Groningen, 1918, pp. 378-391.**[9]**H. S. Wall,*Analytic Theory of Continued Fractions*, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR**0025596**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F30

Retrieve articles in all journals with MSC: 65F30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521297-0

Article copyright:
© Copyright 1979
American Mathematical Society