The cyclotomic numbers of order sixteen

Authors:
Ronald J. Evans and Jay Roderick Hill

Journal:
Math. Comp. **33** (1979), 827-835

MSC:
Primary 10G15; Secondary 10A40, 12C20

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521298-2

MathSciNet review:
521298

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete table of 408 formulas for cyclotomic numbers of order sixteen is presented. Each number is expressed as a linear combination of parameters of quartic, octic, and bioctic Jacobi sums. Recent applications of these formulas are discussed.

**[1]**Pierre Barrucand and Harvey Cohn,*Note on primes of type 𝑥²+32𝑦², class number, and residuacity*, J. Reine Angew. Math.**238**(1969), 67–70. MR**0249396**, https://doi.org/10.1515/crll.1969.238.67**[2]**L. D. Baumert and H. Fredricksen,*The cyclotomic numbers of order eighteen with applications to difference sets*, Math. Comp.**21**(1967), 204–219. MR**0223322**, https://doi.org/10.1090/S0025-5718-1967-0223322-5**[3]**Bruce C. Berndt and Ronald J. Evans,*Sums of Gauss, Jacobi, and Jacobsthal*, J. Number Theory**11**(1979), no. 3, S. Chowla Anniversary Issue, 349–398. MR**544263**, https://doi.org/10.1016/0022-314X(79)90008-8**[4]**Bruce C. Berndt and Ronald J. Evans,*Sums of Gauss, Eisenstein, Jacobi, Jacobsthal, and Brewer*, Illinois J. Math.**23**(1979), no. 3, 374–437. MR**537798****[5]**L. E. Dickson,*Cyclotomy, Higher Congruences, and Waring’s Problem*, Amer. J. Math.**57**(1935), no. 2, 391–424. MR**1507083**, https://doi.org/10.2307/2371217**[6]**Ronald J. Evans,*Bioctic Gauss sums and sixteenth power residue difference sets*, Acta Arith.**38**(1980/81), no. 1, 37–46. MR**574123****[7]**Ronald J. Evans,*Resolution of sign ambiguities in Jacobi and Jacobsthal sums*, Pacific J. Math.**81**(1979), no. 1, 71–80. MR**543734****[8]**Reinaldo E. Giudici, Joseph B. Muskat, and Stanley F. Robinson,*On the evaluation of Brewer’s character sums*, Trans. Amer. Math. Soc.**171**(1972), 317–347. MR**0306122**, https://doi.org/10.1090/S0002-9947-1972-0306122-5**[9]**Helmut Hasse,*Der 2ⁿ-te Potenzcharakter von 2 im Körper der 2ⁿ-ten Einheitswurzeln*, Rend. Circ. Mat. Palermo (2)**7**(1958), 185–244 (German). MR**0105401**, https://doi.org/10.1007/BF02854527**[10]**Emma Lehmer,*On cyclotomic numbers of order sixteen*, Canadian J. Math.**6**(1954), 449–454. MR**0063398****[11]**Emma Lehmer,*On the number of solutions of 𝑢^{𝑘}+𝐷≡𝑤²(\mod𝑝)*, Pacific J. Math.**5**(1955), 103–118. MR**0067918****[12]**Emma Lehmer,*On Jacobi functions*, Pacific J. Math.**10**(1960), 887–893. MR**0113852****[13]**Philip A. Leonard and Kenneth S. Williams,*The cyclotomic numbers of order eleven*, Acta Arith.**26**(1974/75), no. 4, 365–383. MR**0376513****[14]**Philip A. Leonard and Kenneth S. Williams,*The cyclotomic numbers of order seven*, Proc. Amer. Math. Soc.**51**(1975), 295–300. MR**0371868**, https://doi.org/10.1090/S0002-9939-1975-0371868-8**[15]**J. B. Muskat,*The cyclotomic numbers of order fourteen*, Acta Arith.**11**(1965/1966), 263–279. MR**0193081****[16]**Joseph B. Muskat and Albert L. Whiteman,*The cyclotomic numbers of order twenty*, Acta Arith.**17**(1970), 185–216. MR**0268151****[17]**Albert Leon Whiteman,*The cyclotomic numbers of order sixteen*, Trans. Amer. Math. Soc.**86**(1957), 401–413. MR**0092807**, https://doi.org/10.1090/S0002-9947-1957-0092807-7**[18]**Albert Leon Whiteman,*The cyclotomic numbers of order ten*, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 95–111. MR**0113851****[19]**A. L. Whiteman,*The cyclotomic numbers of order twelve*, Acta Arith.**6**(1960), 53–76. MR**0118709**

Retrieve articles in *Mathematics of Computation*
with MSC:
10G15,
10A40,
12C20

Retrieve articles in all journals with MSC: 10G15, 10A40, 12C20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521298-2

Keywords:
Cyclotomic numbers of order sixteen,
Jacobi sums,
Jacobsthal sums,
sign ambiguities

Article copyright:
© Copyright 1979
American Mathematical Society