Two conjectures of B. R. Santos concerning totitives

Authors:
H. G. Kopetzky and W. Schwarz

Journal:
Math. Comp. **33** (1979), 841-844

MSC:
Primary 10A20; Secondary 10H25

MathSciNet review:
521300

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently B. R. Santos conjectured that 12 is the largest integer *n* with the following property:

*x*, it is proved that the conjecture of Santos is true. The same result holds, if in addition it is assumed in that

*m*is a prime.

**[1]**E. LANDAU,*Handbuch der Lehre von der Verteilung der Primzahlen*, Teubner, Leipzig und Berlin, 1909.**[2]**J. Barkley Rosser and Lowell Schoenfeld,*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**0137689****[3]**J. B. ROSSER & L. SCHOENFELD,*Sharper Bounds for the Chebyshev Functions**and*, University of Wisconsin MRC Technical Summary Report #1475, 1974.**[4]**Bernardo Recamán Santos,*Twelve and its totitives*, Math. Mag.**49**(1976), no. 5, 239–240. MR**0417037**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A20,
10H25

Retrieve articles in all journals with MSC: 10A20, 10H25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0521300-8

Keywords:
Prime number theorem,
prime totitives

Article copyright:
© Copyright 1979
American Mathematical Society