A marching technique for nonseparable equations

Author:
Louis W. Ehrlich

Journal:
Math. Comp. **33** (1979), 881-890

MSC:
Primary 65F10; Secondary 65N20, 68C25

DOI:
https://doi.org/10.1090/S0025-5718-1979-0528045-9

MathSciNet review:
528045

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A multiple-shooting marching technique is described which is applicable to arbitrary block tridiagonal matrices derived from nonseparable difference equations which are solved many times. Comparison with other methods on a particular problem shows the method to be competitive with respect to time and storage.

**[1]**O. AXELSSON,*On Preconditioning and Convergence Acceleration in Sparse Matrix Problems*, CERN 74-10, Geneva.**[2]**R. E. BANK & D. J. ROSE, "Marching algorithms for elliptic boundary value problems. I: The constant coefficient case,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 792-829. MR**0502000 (58:19197a)****[3]**R. E. BANK, "Marching algorithms for elliptic boundary value problems. II: The variable coefficient case,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 950-970. MR**0502001 (58:19197b)****[4]**P. CONCUS, G. H. GOLUB & D. P. O'LEARY, "A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations," in*Sparse Matrix Computations*(J. R. Bunch and D. J. Rose, Editors), Academic Press, New York, 1976. MR**0501821 (58:19069)****[5]**L. W. EHRLICH,*Iterative vs. a Direct Method for Solving Fourth Order Elliptic Difference Equations*, Proc.-A. C. M. National Meeting, Los Angeles, Calif., 1966, pp. 29-35.**[6]**L. W. EHRLICH, "The numerical solution of a Navier-Stokes problem in a stenosed tube: A danger in boundary approximations of implicit marching schemes,"*Computers and Fluids*. (To appear.) MR**568753 (81d:76028)****[7]**A. C. HINDMARSH,*Solution of Block-Tridiagonal Systems of Linear Algebraic Equations*, Lawrence Livermore Laboratory, UCID-30150, 1977.**[8]**D. S. KERSHAW,*The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations*, Lawrence Livermore Laboratory, UCRL-78333, 1977. MR**0488669 (58:8190)****[9]**J. A. MANTEUFFEL,*An Iterative Method for Solving Nonsymmetric Linear Systems with Dynamic Estimation of Parameters*, Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, UIUCDCS-R-75-758, 1975.**[10]**J. A. MEIJERINK & H. A. VAN DER VORST, "An iterative solution method for linear systems of which the coefficient matrix is a symmetric*M*-matrix,"*Math. Comp.*, v. 31, 1977, pp. 148-162. MR**0438681 (55:11589)****[10a]**I. J. PEARSON & B. KAPLAN,*Computer Time Comparison of Point and Block Successive Overtaxation*, Report AFIT-TR-70-6, Air Force Institute of Technology, School of Engineering, Wright-Patterson AFB, Ohio, 1970.**[11]**P. J. ROACHE,*A Direct Method for the Discretized Poisson Equation*, Sandia Report SC-RR-70-S79, 1971.**[12]**P. J. ROACHE, "Marching methods for elliptic problems: Part I",*Numerical Heat Transfer*, v. 1, 1978, pp. 1-25.**[13]**S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ & A. H. SHERMAN,*Yale Sparse Matrix Package*II.*The Nonsymmetric Codes*, Res. Report #114, Dept. of Comput. Sci., Yale Univ., 1977.**[14]**J. F. THOMPSON, F. C. THAMES & C. W. MASTIN, "Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary twodimensional bodies,"*J. Computational Phys.*, v. 15, 1974, pp. 299-319.**[15]**J. F. THOMPSON, F. C. THAMES & C. W. MASTIN,*Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing any Number of Arbitrary Two-Dimensional Bodies*, NASA CR-2729, 1977.**[16]**D. M. YOUNG, JR. & L. J. HAYES,*Notes on the Conjugate Gradient Method*, CNA Report, Univ. of Texas, Austin.**[17]**D. M. YOUNG, JR.,*Iterative Solution of Large Linear Systems*, Academic Press, New York, 1971. MR**0305568 (46:4698)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F10,
65N20,
68C25

Retrieve articles in all journals with MSC: 65F10, 65N20, 68C25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0528045-9

Article copyright:
© Copyright 1979
American Mathematical Society