A note on the Rosenbrock procedure

Author:
T. D. Bui

Journal:
Math. Comp. **33** (1979), 971-975

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1979-0528050-2

MathSciNet review:
528050

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To be useful for extremely stiff systems of ordinary differential equations, *A*-stability and a maximally damped condition as (i.e., *L*-stability) are desirable. This paper investigates the condition of *L*-stability for a class of Runge-Kutta methods known as the Rosenbrock procedure. This procedure requires only one computation of a Jacobian matrix per step of integration, *L*-stable Rosenbrock methods up to order four are derived.

**[1]**Roger Alexander,*Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1006–1021. MR**0458890**, https://doi.org/10.1137/0714068**[2]**Theodore A. Bickart,*An efficient solution process for implicit Runge-Kutta methods*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1022–1027. MR**0458893**, https://doi.org/10.1137/0714069**[3]**J. C. Butcher,*Implicit Runge-Kutta processes*, Math. Comp.**18**(1964), 50–64. MR**0159424**, https://doi.org/10.1090/S0025-5718-1964-0159424-9**[4]**J. C. Butcher,*On the implementation of implicit Runge-Kutta methods*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 3, 237–240. MR**0488746****[5]**T. D. Bui,*On an 𝐿-stable method for stiff differential equations*, Information Processing Lett.**6**(1977), no. 5, 158–161. MR**0451733****[6]**T. D. Bui,*Some 𝐴-stable and 𝐿-stable methods for the numerical integration of stiff ordinary differential equations*, J. Assoc. Comput. Mach.**26**(1979), no. 3, 483–493. MR**535267**, https://doi.org/10.1145/322139.322147**[7]**J. R. Cash,*Semi-implicit Runge-Kutta procedures with error estimates for the numerical integration of stiff systems of ordinary differential equations*, J. Assoc. Comput. Mach.**23**(1976), no. 3, 455–460. MR**0471312**, https://doi.org/10.1145/321958.321966**[8]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[9]**Byron L. Ehle,*High order 𝐴-stable methods for the numerical solution of systems of D.E.’s*, Nordisk Tidskr. Informationsbehandling (BIT)**8**(1968), 276–278. MR**0239762****[10]**C. F. Haines,*Implicit integration processes with error estimate for the numerical solution of differential equations*, Comput. J.**12**(1969/1970), 183–187. MR**0246513**, https://doi.org/10.1093/comjnl/12.2.183**[11]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[12]**S. P. NØRSETT,*Semi-Explicit Runge-Kutta Methods*, Math. and Comp. Report 6/74, Dept. of Math., University of Trondheim, Norway, 1974.**[13]**Syvert P. Nørsett and Arne Wolfbrandt,*Attainable order of rational approximations to the exponential function with only real poles*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 2, 200–208. MR**0447900****[14]**H. H. Rosenbrock,*Some general implicit processes for the numerical solution of differential equations*, Comput. J.**5**(1962/1963), 329–330. MR**0155434**, https://doi.org/10.1093/comjnl/5.4.329

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0528050-2

Article copyright:
© Copyright 1979
American Mathematical Society