Numerical approximation of a Cauchy problem for a parabolic partial differential equation

Authors:
Richard E. Ewing and Richard S. Falk

Journal:
Math. Comp. **33** (1979), 1125-1144

MSC:
Primary 65M15; Secondary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537961-3

MathSciNet review:
537961

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A procedure for the numerical approximation of the Cauchy problem for the following linear parabolic partial differential equation is defined:

*g*are known only approximately.

**[1]**Garth A. Baker, James H. Bramble, and Vidar Thomée,*Single step Galerkin approximations for parabolic problems*, Math. Comp.**31**(1977), no. 140, 818–847. MR**0448947**, https://doi.org/10.1090/S0025-5718-1977-0448947-X**[2]**J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin,*Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 2, 218–241. MR**0448926**, https://doi.org/10.1137/0714015**[3]**J. R. Cannon,*A Cauchy problem for the heat equation*, Ann. Mat. Pura Appl. (4)**66**(1964), 155–165. MR**0173089**, https://doi.org/10.1007/BF02412441**[4]**J. R. Cannon and Jim Douglas Jr.,*The Cauchy problem for the heat equation*, SIAM J. Numer. Anal.**4**(1967), 317–336. MR**0216785**, https://doi.org/10.1137/0704028**[5]**J. R. Cannon and Richard E. Ewing,*A direct numerical procedure for the Cauchy problem for the heat equation*, J. Math. Anal. Appl.**56**(1976), no. 1, 7–17. MR**0416055**, https://doi.org/10.1016/0022-247X(76)90003-2**[6]**Richard E. Ewing,*The Cauchy problem for a linear parabolic partial differential equation*, J. Math. Anal. Appl.**71**(1979), no. 1, 167–186. MR**545867**, https://doi.org/10.1016/0022-247X(79)90223-3**[7]**F. Ginsberg,*On the Cauchy problem for the one-dimensional heat equation*, Math. Comp.**17**(1963), 257–269. MR**0162064**, https://doi.org/10.1090/S0025-5718-1963-0162064-8**[8]**J. HADAMARD,*Lectures on the Cauchy Problem in Linear Partial Differential Equations*, Yale Univ. Press, New Haven, Conn., 1923.**[9]**Erhard Heinz,*Beiträge zur Störungstheorie der Spektralzerlegung*, Math. Ann.**123**(1951), 415–438 (German). MR**0044747**, https://doi.org/10.1007/BF02054965**[10]**J.-L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications. Vol. I*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR**0350177****[11]**R. C. MacCamy, V. J. Mizel, and T. I. Seidman,*Approximate boundary controllability for the heat equation*, J. Math. Anal. Appl.**23**(1968), 699–703. MR**0228805**, https://doi.org/10.1016/0022-247X(68)90148-0**[12]**V. J. Mizel and T. I. Seidman,*Observation and prediction for the heat equation*, J. Math. Anal. Appl.**28**(1969), 303–312. MR**0247301**, https://doi.org/10.1016/0022-247X(69)90029-8**[13]**Carlo Pucci,*Alcune limitazioni per le soluzioni di equazioni paraboliche*, Ann. Mat. Pura Appl. (4)**48**(1959), 161–172 (Italian, with English summary). MR**0115000**, https://doi.org/10.1007/BF02410663**[14]**Thomas I. Seidman,*Observation and prediction for one-dimensional diffusion equations*, J. Math. Anal. Appl.**51**(1975), 165–175. MR**0429291**, https://doi.org/10.1016/0022-247X(75)90149-3**[15]**Mary Fanett Wheeler,*𝐿_{∞} estimates of optimal orders for Galerkin methods for one-dimensional second order parabolic and hyperbolic equations*, SIAM J. Numer. Anal.**10**(1973), 908–913. MR**0343658**, https://doi.org/10.1137/0710076

Retrieve articles in *Mathematics of Computation*
with MSC:
65M15,
65N30

Retrieve articles in all journals with MSC: 65M15, 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537961-3

Keywords:
Cauchy problem,
error estimates,
improperly posed problem

Article copyright:
© Copyright 1979
American Mathematical Society