On the SHASTA FCT algorithm for the equation

Authors:
Tsutomu Ikeda and Tomoyasu Nakagawa

Journal:
Math. Comp. **33** (1979), 1157-1169

MSC:
Primary 65M05; Secondary 35L65, 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537963-7

MathSciNet review:
537963

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In recent years, Boris, Book and Hain have proposed a family of finite difference methods called FCT techniques for the Cauchy problem of the continuity equation. The purpose of this paper is to study the stability and convergence about the SHASTA FCT algorithm, which is one of the basic schemes among many FCT techniques, though not in its original form but a slightly modified one for our technical reason. (Our numerical experiments indicate less distinction between the algorithm dealt with here and the original SHASTA FCT one in terms of reproduction of sharp discontinuities.) The main results are Theorems 1 and 2 concerning the -stability and the -convergence, respectively.

**[1]**D. L. BOOK, J. P. BORIS & K. HAIN, "Flux-Corrected Transport. II: Generalization of the method,"*J. Computational Phys.*, v. 18, 1975, pp. 248-283.**[2]**J. P. BORIS & D. L. BOOK, "Flux-Corrected Transport. I. SHASTA, A fluid transport algorithm that works,"*J. Computational Phys.*, v. 11, 1973, pp. 38-69.**[3]**J. P. BORIS &. D. L. BOOK, "Flux-Corrected Transport. III. Minimal-error FCT algorithms,"*J. Computational Phys.*, v. 20, 1976, pp. 397-431.**[4]**J. P. BORIS & D. L. BOOK, "Solution of the continuity equations by the method of Flux-Corrected Transport,"*Methods in Computational Physics*, vol. 16, (J. Killeen, Ed.), Academic Press, New York, 1976, pp. 85-129.**[5]**Samuel Z. Burstein and Arthur A. Mirin,*Third order difference methods for hyperbolic equations*, J. Computational Phys.**5**(1970), 547–571. MR**0282545****[6]**Edward Conway and Joel Smoller,*Clobal solutions of the Cauchy problem for quasi-linear first-order equations in several space variables*, Comm. Pure Appl. Math.**19**(1966), 95–105. MR**0192161**, https://doi.org/10.1002/cpa.3160190107**[7]**James Glimm,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.**18**(1965), 697–715. MR**0194770**, https://doi.org/10.1002/cpa.3160180408**[8]**S. K. Godunov,*Estimates of the error for approximate solutions of the simplest equations of gas dynamics*, Ž. Vyčisl. Mat. i Mat. Fiz.**1**(1961), 622–637 (Russian). MR**0148242****[9]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[10]**S. N. KRUŽKOV, "First order quasilinear equations in several independent variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[11]**Peter D. Lax,*Weak solutions of nonlinear hyperbolic equations and their numerical computation*, Comm. Pure Appl. Math.**7**(1954), 159–193. MR**0066040**, https://doi.org/10.1002/cpa.3160070112**[12]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[13]**Peter D. Lax and Burton Wendroff,*Difference schemes for hyperbolic equations with high order of accuracy*, Comm. Pure Appl. Math.**17**(1964), 381–398. MR**0170484**, https://doi.org/10.1002/cpa.3160170311**[14]**R. W. MacCORMAK, "Numerical solution of the interaction of a shock wave with a laminar boundary layer,"*Proc.*2*nd Internat. Conf. on Numerical Methods in Fluid Dynamics*, (M. Holt, Ed.), Lecture Notes in Phys., vol. 8, Springer-Verlag, Berlin and New York, 1970, pp. 151-163.**[15]**O. A. Oleĭnik,*Discontinuous solutions of non-linear differential equations*, Amer. Math. Soc. Transl. (2)**26**(1963), 95–172. MR**0151737****[16]**O. A. Oleĭnik,*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation*, Uspehi Mat. Nauk**14**(1959), no. 2 (86), 165–170 (Russian). MR**0117408****[17]**Barbara Keyfitz Quinn,*Solutions with shocks: An example of an 𝐿₁-contractive semigroup*, Comm. Pure Appl. Math.**24**(1971), 125–132. MR**0271545**, https://doi.org/10.1002/cpa.3160240203**[18]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[19]**V. V. Rusanov,*On difference schemes of third order accuracy for non-linear hyperbolic systems*, J. Computational Phys.**5**(1970), 507–516. MR**0275699****[20]**Gideon Zwas and Saul Abarbanel,*Third and fourth order accurate schemes for hyperbolic equations of conservation law form*, Math. Comp.**25**(1971), 229–236. MR**0303766**, https://doi.org/10.1090/S0025-5718-1971-0303766-4

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05,
35L65,
65M10

Retrieve articles in all journals with MSC: 65M05, 35L65, 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537963-7

Keywords:
Conservation law,
generalized solution,
entropy condition,
positive finite difference scheme,
Flux-Corrected Transport (FCT) technique,
antidiffusion operator,
SHASTA,
-stability,
-convergence,
function having locally bounded variation,
schemes in conservation form

Article copyright:
© Copyright 1979
American Mathematical Society