Equivalent forms of multistep formulas

Author:
Robert D. Skeel

Journal:
Math. Comp. **33** (1979), 1229-1250

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537967-4

Corrigendum:
Math. Comp. **47** (1986), 769.

MathSciNet review:
537967

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For uniform meshes it is shown that any linear *k*-step formula can be formulated so that only *k* values need to be saved between steps. By saving additional *m* values it is possible to construct local polynomial approximations of degree , which can be used as predictor formulas. Different polynomial bases lead to different equivalent forms of multistep formulas. In particular, local monomial bases yield Nordsieck formulas. An explicit one-to-one correspondence is established between Nordsieck formulas and *k*-step formulas of order at least *k*, and a strong equivalence result is proved for all but certain pathological cases. Equivalence is also shown for P(EC) formulas but not for P(EC)E formulas.

**[G]**D. BYRNE & A. C. HINDMARSH (1975), "A polyalgorithm for the numerical solution of ordinary differential equations,"*ACM Trans. Math. Software*, v. 1, pp. 71-96. MR**0378432 (51:14600)****[G]**DAHLQUIST (1956), "Numerical integration of ordinary differential equations,"*Math. Scand.*, v. 4, pp. 33-50. MR**0080998 (18:338d)****[G]**DAHLQUIST (1963), "A special stability problem for linear multistep methods,"*BIT*, v. 3, pp. 27-43. MR**0170477 (30:715)****[G]**DAHLQUIST (1975),*On Stability and Error Analysis for Stiff Non-linear Problems, Part*I, Report TRITA-NA-7508, Dept. of Computer Sci., Roy. Inst. of Technology, Stockholm.**[J]**DESCLOUX (1963),*A Note on a Paper by A. Nordsieck*, Report #131, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign.**[C]**DILL & C. W. GEAR (1971), "A graphical search for stiffly stable methods for ordinary differential equations,"*J. Assoc. Comput. Mach.*, v. 18, pp. 75-79.**[C]**W. GEAR (1966),*The Numerical Integration of Ordinary Differential Equations of Various Orders*, Report #ANL-7126, Argonne National Laboratory, Argonne, Illinois. MR**0225494 (37:1087)****[C]**W. GEAR (1971a),*Numerical Initial Value Problems in Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J. MR**0315898 (47:4447)****[C]**W. GEAR (1971b), "Algorithm 407: DIFSUB for solution of ordinary differential equations,"*Comm. ACM*, v. 14, pp. 185-190.**[R]**D. GRIGORIEFF & J. SCHROLL (1977),*Über*-*stabile Verfahren hoher Konsistenzordnung*, Nr. 34, Fachbereich Mathematik (3), Technische Universität Berlin.**[G]**K. GUPTA (1976), "Some new high-order multistep formulae for solving stiff equations,"*Math. Comp.*, v. 30, pp. 417-432. MR**0423812 (54:11786)****[G]**K. GUPTA & C. S. WALLACE (1975), "Some new multistep methods for solving ordinary differential equations,"*Math. Comp.*, v. 29, pp. 489-500. MR**0373290 (51:9490)****[P]**HENRICI (1962),*Discrete Variable Methods in Ordinary Differential Equations*, Wiley, New York. MR**0135729 (24:B1772)****[A]**C. HINDMARSH (1974),*GEAR*:*Ordinary Differential Equation Solver*, UCID-3001, Rev. 3, Lawrence Livermore Laboratory, Univ. of California, Livermore, California.**[M]**K. JAIN & V. K. SRIVASTAVA (1970),*High Order Stiffly Stable Methods for Ordinary Differential Equations*, Report #394, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign.**[D]**E. KNUTH (1968),*The Art of Computer Programming*, Vol. 1:*Fundamental Algorithms*, Addison-Wesley, Reading, Mass. MR**0378456 (51:14624)****[A]**K. KONG (1977),*A Search for Better Linear Multistep Methods for Stiff Problems*, Report R-77-899, Dept. of Computer Sci., Univ. of Illinois at Urbana-Champaign.**[A]**NORDSIECK (1962), "On numerical integration of ordinary differential equations,"*Math. Comp.*, v. 16, pp. 22-49. MR**0136519 (24:B2552)****[M]**R. OSBORNE (1966), "On Nordsieck's method for the numerical solution of ordinary differential equations,"*BIT*, v. 6, pp. 51-57. MR**0195264 (33:3467)****[R]**D. SKEEL (1973),*Convergence of Multivalue Methods for Solving Ordinary Differential Equations*, Report TR73-16, Dept. of Computing Sci., Univ. of Alberta, Edmonton.**[R]**D. SKEEL & L. W. JACKSON (1977), "Consistency of Nordsieck methods,"*SIAM J. Numer. Anal.*, v. 14, pp. 910-924. MR**0455412 (56:13650)****[R]**D. SKEEL & A. K. KONG (1977), "Blended linear multistep methods,"*ACM Trans. Math. Software*, v. 3, pp. 326-345. MR**0461922 (57:1904)****[C]**S. WALLACE & G. K. GUPTA (1973), "General linear multistep methods to solve ordinary differential equations,"*Austral. Comput. J.*, v. 5, pp. 62-69. MR**0362919 (50:15357)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537967-4

Keywords:
Linear multistep formula,
multistep formula,
linear multistep method,
multistep method,
Nordsieck method,
multivalue method,
predictor-corrector method

Article copyright:
© Copyright 1979
American Mathematical Society