A polynomial representation of hybrid methods for solving ordinary differential equations

Author:
G. K. Gupta

Journal:
Math. Comp. **33** (1979), 1251-1256

MSC:
Primary 65L05

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537968-6

MathSciNet review:
537968

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A polynomial representation of the hybrid methods for solving ordinary differential equations is presented. The advantages of the representation are briefly discussed. Also it is shown that one step taken using a hybrid method is equivalent to two steps of the usual multistep methods; one step taken using an explicit method and the other taken using an implicit method. Therefore, the hybrid methods are really a special case of cyclic methods.

**[1]**J. C. Butcher,*A modified multistep method for the numerical integration of ordinary differential equations*, J. Assoc. Comput. Mach.**12**(1965), 124–135. MR**0178573**, https://doi.org/10.1145/321250.321261**[2]**Germund Dahlquist,*Convergence and stability in the numerical integration of ordinary differential equations*, Math. Scand.**4**(1956), 33–53. MR**0080998**, https://doi.org/10.7146/math.scand.a-10454**[3]**John Donelson III. and Eldon Hansen,*Cyclic composite multistep predictor-corrector methods*, SIAM J. Numer. Anal.**8**(1971), 137–157. MR**0282531**, https://doi.org/10.1137/0708018**[4]**C. W. Gear,*Hybrid methods for initial value problems in ordinary differential equations*, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.**2**(1965), 69–86. MR**0179490****[5]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[6]**William B. Gragg and Hans J. Stetter,*Generalized multistep predictor-corrector methods*, J. Assoc. Comput. Mach.**11**(1964), 188–209. MR**0161476**, https://doi.org/10.1145/321217.321223**[7]**G. K. Gupta,*Implementing second-derivative multistep methods using the Nordsieck polynomial representation*, Math. Comp.**32**(1978), no. 141, 13–18. MR**0478630**, https://doi.org/10.1090/S0025-5718-1978-0478630-7**[8]**J. J. Kohfeld and G. T. Thompson,*Multistep methods with modified predictors and correctors*, J. Assoc. Comput. Mach.**14**(1967), 155–166. MR**0242375**, https://doi.org/10.1145/321371.321383**[9]**J. J. KOHFELD & G. T. THOMPSON (1968), "A modification of Nordsieck's method using an 'off-step' point,"*J. Assoc. Comput. Mach.*, v. 15, pp. 390-401.**[10]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[11]**Arnold Nordsieck,*On numerical integration of ordinary differential equations*, Math. Comp.**16**(1962), 22–49. MR**0136519**, https://doi.org/10.1090/S0025-5718-1962-0136519-5**[12]**Hans J. Stetter,*Cyclic finite-difference methods for ordinary differential equations*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 134–143. Lecture Notes in Math., Vol. 363. MR**0483470****[13]**C. S. Wallace and G. K. Gupta,*General linear multistep methods to solve ordinary differential equations*, Austral. Comput. J.**5**(1973), 62–69. MR**0362919**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05

Retrieve articles in all journals with MSC: 65L05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537968-6

Keywords:
Linear multistep methods,
hybrid methods,
numerical solution of ordinary differential equations

Article copyright:
© Copyright 1979
American Mathematical Society