Alternatives to the exponential spline in tension

Author:
Steven Pruess

Journal:
Math. Comp. **33** (1979), 1273-1281

MSC:
Primary 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537971-6

MathSciNet review:
537971

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general setting is given for smooth interpolating splines depending on a parameter such that as this parameter approaches infinity the spline converges to the piecewise linear interpolant. The theory includes the standard exponential spline in tension, a rational spline, and several cubic splines. An algorithm is given for one of the cubics; the parameter for this example controls the spacing of new knots which are introduced.

**[1]**A. K. Cline,*Scalar- and planar-valued curve fitting using splines under tension*, Comm. ACM**17**(1974), 218–220. MR**0343533**, https://doi.org/10.1145/360924.360971**[2]**Carl de Boor,*A practical guide to splines*, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR**507062****[3]**P. DUBE, "Univariate blending functions and alternatives,"*Comput. Graphics and Image Processing*, v. 6, 1977, pp. 394-408.**[4]**P. DUBE, "Automatic generation of parameters for preliminary interactive design of free-form curves." (Submitted for publication.)**[5]**A. R. Forrest,*Interactive interpolation and approximation by Bézier polynomials*, Comput. J.**15**(1972), 71–79. MR**0315866**, https://doi.org/10.1016/0010-4485(90)90038-E**[6]**Robert E. Barnhill and Richard F. Riesenfeld (eds.),*Computer aided geometric design*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Inc.], New York-London, 1974. MR**0349061****[7]**D. HILL,*Estimation of Probability Functions Using Splines*, Doctoral Thesis, Univ. of New Mexico, Albuquerque, 1973.**[8]**David F. McAllister, Eli Passow, and John A. Roulier,*Algorithms for computing shape preserving spline interpolations to data*, Math. Comp.**31**(1977), no. 139, 717–725. MR**0448805**, https://doi.org/10.1090/S0025-5718-1977-0448805-0**[9]**Gregory M. Nielson,*Some piecewise polynomial alternatives to splines under tension*, Computer aided geometric design (Proc. Conf., Univ. Utah, Salt Lake City, Utah, 1974) Academic Press, New York, 1974, pp. 209–235. MR**0371012****[10]**G. NIELSON, Unpublished notes, Dept. of Mathematics, Arizona State University.**[11]**Eli Passow and John A. Roulier,*Monotone and convex spline interpolation*, SIAM J. Numer. Anal.**14**(1977), no. 5, 904–909. MR**0470566**, https://doi.org/10.1137/0714060**[12]**Steven Pruess,*Properties of splines in tension*, J. Approximation Theory**17**(1976), no. 1, 86–96. MR**0407491****[13]**Daniel G. Schweikert,*An interpolation curve using a spline in tension*, J. Math. and Phys.**45**(1966), 312–317. MR**0207174****[14]**Lawrence F. Shampine and Richard C. Allen Jr.,*Numerical computing: an introduction*, W. B. Saunders Co., Philadelphia-London-Toronto, Ont., 1973. MR**0359250****[15]**H. Späth,*Exponential spline interpolation*, Computing (Arch. Elektron. Rechnen)**4**(1969), 225–233 (English, with German summary). MR**0248966****[16]**Helmuth Späth,*Spline algorithms for curves and surfaces*, Utilitas Mathematica Publishing Inc., Winnipeg, Man., 1974. Translated from the German by W. D. Hoskins and H. W. Sager. MR**0359267****[17]**R. WIELINGA, "Constrained interpolation using Bézier curves," in*Computer Aided Geometric Design*(Barnhill and Riesenfeld, Eds.), Academic Press, New York, 1974, pp. 153-172.**[18]**David F. McAllister and John A. Roulier,*Interpolation by convex quadratic splines*, Math. Comp.**32**(1978), no. 144, 1154–1162. MR**0481734**, https://doi.org/10.1090/S0025-5718-1978-0481734-6

Retrieve articles in *Mathematics of Computation*
with MSC:
65D07

Retrieve articles in all journals with MSC: 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537971-6

Article copyright:
© Copyright 1979
American Mathematical Society