Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Cyclic-sixteen class fields for $ {\bf Q}((-p)\sp{1/2})$ by modular arithmetic


Author: Harvey Cohn
Journal: Math. Comp. 33 (1979), 1307-1316
MSC: Primary 16A05
MathSciNet review: 537976
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Numerical experiments result in the construction of cyclic-sixteen class fields for $ {\mathbf{Q}}{( - p)^{1/2}}$, p prime $ < 2000$, by radicals involving quadratic and biquadratic parameters. These fields are characterized by rational factorization properties modulo a variable prime; but it suffices to use only three primes selected and checked by computer to verify the class field, if earlier work (jointly with Cooke) on the cyclic-eight class field is utilized.


References [Enhancements On Off] (What's this?)

  • [1] Pierre Barrucand and Harvey Cohn, Note on primes of type 𝑥²+32𝑦², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67–70. MR 0249396 (40 #2641)
  • [1a] Helmut Bauer, Zur Berechnung der 2-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42–46 (German). MR 0289453 (44 #6643)
  • [2] Harvey Cohn and George Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), no. 4, 367–377. MR 0422209 (54 #10201)
  • [3] P. G. L. DIRICHLET, "Untersuchungen über die Theorie der complexen Zahlen," J. Reine Angew. Math., v. 22, 1841, pp. 375-378.
  • [4] Helmut Hasse, Kurt Hensels entscheidender Anstoss zur Entdeckung des Lokal-Global-Prinzips, J. Reine Angew. Math. 209 (1962), 3–4 (German). MR 0139510 (25 #2942)
  • [5] E. L. INCE, Cycles of Reduced Ideals in Quadratic Fields, British Assoc. Adv. Sci. Math. Tables, vol. IV, London, 1934.
  • [6] R. LAKEIN, Class Number and Fundamental Unit of Dirichlet Fields With Prime Relative Discriminant. (Unpublished table.)
  • [7] K. S. WILLIAMS, "On the divisibility of the class number of $ {\mathbf{Q}}{( - p)^{1/2}}$ by 16." (Manuscript.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 16A05

Retrieve articles in all journals with MSC: 16A05


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1979-0537976-5
PII: S 0025-5718(1979)0537976-5
Article copyright: © Copyright 1979 American Mathematical Society