New primes of the form

Author:
Robert Baillie

Journal:
Math. Comp. **33** (1979), 1333-1336

MSC:
Primary 10A25

Erratum:
Math. Comp. **38** (1982), 335.

MathSciNet review:
537979

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All primes of the form for *k* odd, , , have now been computed. Those not previously published are given here. Numbers with and were also tested. Three new factors of Fermat numbers and a large pair of twin primes were found.

**[1]**JOHN BRILLHART, D. H. LEHMER & JOHN L. SELFRIDGE, "New primality criteria and factorizations of ,"*Math. Comp.*, v. 29, 1975, pp. 620-647. MR**52**#5546. MR**0384673 (52:5546)****[2]**R. E. CRANDALL & M. A. PENK, "A search for large twin prime pairs,"*Math. Comp.*, v. 33, 1979, pp. 383-388. MR**514834 (81a:10010)****[3]**RICHARD K. GUY, "Some unsolved problems," in Computers in Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, pp. 415-422. MR**0277393 (43:3126)****[4]**JOHN C. HALLYBURTON, JR. & JOHN BRILLHART, "Two new factors of Fermat numbers,"*Math. Comp.*, v. 29, 1975, pp. 109-112. MR**51**#5460. For a correction, see*Math. Comp.*, v. 30, 1976, p. 198. MR**52**#13599. MR**0369225 (51:5460)****[5]**G. MATTHEW & H. C. WILLIAMS, "Some new primes of the form ,"*Math. Comp.*, v. 31, 1977, pp. 797-798. MR**55**#12605. MR**0439719 (55:12605)****[6]**F. PROTH, "Théorèmes sur les nombres premiers,"*C. R. Acad. Sci. Paris*, v. 87, 1878, p. 926.**[7]**RAPHAEL M. ROBINSON, "The converse of Fermat's theorem,"*Amer. Math. Monthly*, v. 64, 1957, pp. 703-710. MR**20**#4520. MR**0098057 (20:4520)****[8]**RAPHAEL M. ROBINSON, "A report on primes of the form and on factors of Fermat numbers,"*Proc. Amer. Math. Soc.*, v. 9, 1958, pp. 673-681. MR**20**#3097. MR**0096614 (20:3097)****[9]**D. E. SHIPPEE, "Four new factors of Fermat numbers,"*Math. Comp.*, v. 32, 1978, p. 941. MR**0472664 (57:12359)****[10]**H. M. STARK,*An Introduction to Number Theory*, Markham, Chicago, 1970, p. 110. MR**40**#7186. MR**0253973 (40:7186)****[11]**H. C. WILLIAMS, "Primality testing on a computer,"*Ars Combinatoria*, v. 5, 1978, pp. 127-185. MR**504864 (80d:10002)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25

Retrieve articles in all journals with MSC: 10A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537979-0

Keywords:
Fermat numbers,
factoring,
twin primes

Article copyright:
© Copyright 1979
American Mathematical Society