Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Some primes of the form $ (a\sp{n}-1)/(a-1)$


Authors: H. C. Williams and E. Seah
Journal: Math. Comp. 33 (1979), 1337-1342
MSC: Primary 10A25
MathSciNet review: 537980
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A table of primes of the form $ ({a^n} - 1)/(a - 1)$ for values of a and n such that $ 3 \leqslant a \leqslant 12$, $ 2 \leqslant n \leqslant 1000$ is presented. A description is given of the techniques used to obtain this table, and some numbers such as $ ({10^{1031}} - 1)/9$ which are pseudoprime but whose primality is not yet rigorously established are also discussed.


References [Enhancements On Off] (What's this?)

  • [1] J. BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and factorizations of $ {2^m} \pm 1$," Math. Comp., v. 29, 1975, pp. 620-647. MR 0384673 (52:5546)
  • [2] J. BRILLHART, D. H. LEHMER, EMMA LEHMER, J. L. SELFRIDGE, BRYANT TUCKERMAN & S. S. WAGSTAFF, JR., "Factorizations of $ {b^n} - 1$ and $ {b^n} + 1$ for $ b < 13$." (Unpublished.)
  • [3] DONALD B. GILLIES, "Three new Mersenne primes and a statistical theory," Math. Comp., v. 18, 1964, pp. 93-97. MR 0159774 (28:2990)
  • [4] M. KRAITCHIK, Recherches sur la Théorie des Nombres, Tome 2, Gauthier-Villars, Paris, 1929.
  • [5] J. M. POLLARD, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc., v. 76, 1974, pp. 521-528. MR 0354514 (50:6992)
  • [6] BRYANT TUCKERMAN, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U.S.A., v. 68, 1971, pp. 2319-2320. MR 0291072 (45:166)
  • [7] H. C. WILLIAMS & J. S. JUDD, "Some algorithms for prime testing using generalized Lehmer functions," Math. Comp., v. 30, 1976, pp. 867-886. MR 0414473 (54:2574)
  • [8] H. C. WILLIAMS, "Some primes with interesting digit patterns," Math. Comp., v. 32, 1978, pp. 1306-1310. MR 0480311 (58:484)
  • [9] H. C. WILLIAMS, "Primality testing on a computer," Ars Combinatoria, v. 5, 1978, pp. 127-185. MR 504864 (80d:10002)
  • [10] M. C. WUNDERLICH & J. L. SELFRIDGE, "A design for a number theory package with an optimized trial division routine," Comm. ACM, v. 17, 1974, pp. 272-276.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A25

Retrieve articles in all journals with MSC: 10A25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0537980-7
Article copyright: © Copyright 1979 American Mathematical Society