Some primes of the form
Authors:
H. C. Williams and E. Seah
Journal:
Math. Comp. 33 (1979), 13371342
MSC:
Primary 10A25
MathSciNet review:
537980
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A table of primes of the form for values of a and n such that , is presented. A description is given of the techniques used to obtain this table, and some numbers such as which are pseudoprime but whose primality is not yet rigorously established are also discussed.
 [1]
John
Brillhart, D.
H. Lehmer, and J.
L. Selfridge, New primality criteria and
factorizations of 2^{𝑚}±1, Math.
Comp. 29 (1975),
620–647. MR 0384673
(52 #5546), http://dx.doi.org/10.1090/S00255718197503846731
 [2]
J. BRILLHART, D. H. LEHMER, EMMA LEHMER, J. L. SELFRIDGE, BRYANT TUCKERMAN & S. S. WAGSTAFF, JR., "Factorizations of and for ." (Unpublished.)
 [3]
Donald
B. Gillies, Three new Mersenne primes and a
statistical theory, Math. Comp. 18 (1964), 93–97. MR 0159774
(28 #2990), http://dx.doi.org/10.1090/S00255718196401597746
 [4]
M. KRAITCHIK, Recherches sur la Théorie des Nombres, Tome 2, GauthierVillars, Paris, 1929.
 [5]
J.
M. Pollard, Theorems on factorization and primality testing,
Proc. Cambridge Philos. Soc. 76 (1974), 521–528. MR 0354514
(50 #6992)
 [6]
Bryant
Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci.
U.S.A. 68 (1971), 2319–2320. MR 0291072
(45 #166)
 [7]
H.
C. Williams and J.
S. Judd, Some algorithms for prime testing
using generalized Lehmer functions, Math.
Comp. 30 (1976), no. 136, 867–886. MR 0414473
(54 #2574), http://dx.doi.org/10.1090/S00255718197604144736
 [8]
H.
C. Williams, Some primes with interesting digit
patterns, Math. Comp. 32
(1978), no. 144, 1306–1310.
MR
0480311 (58 #484), http://dx.doi.org/10.1090/S00255718197804803110
 [9]
H.
C. Williams, Primality testing on a computer, Ars Combin.
5 (1978), 127–185. MR 504864
(80d:10002)
 [10]
M. C. WUNDERLICH & J. L. SELFRIDGE, "A design for a number theory package with an optimized trial division routine," Comm. ACM, v. 17, 1974, pp. 272276.
 [1]
 J. BRILLHART, D. H. LEHMER & J. L. SELFRIDGE, "New primality criteria and factorizations of ," Math. Comp., v. 29, 1975, pp. 620647. MR 0384673 (52:5546)
 [2]
 J. BRILLHART, D. H. LEHMER, EMMA LEHMER, J. L. SELFRIDGE, BRYANT TUCKERMAN & S. S. WAGSTAFF, JR., "Factorizations of and for ." (Unpublished.)
 [3]
 DONALD B. GILLIES, "Three new Mersenne primes and a statistical theory," Math. Comp., v. 18, 1964, pp. 9397. MR 0159774 (28:2990)
 [4]
 M. KRAITCHIK, Recherches sur la Théorie des Nombres, Tome 2, GauthierVillars, Paris, 1929.
 [5]
 J. M. POLLARD, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc., v. 76, 1974, pp. 521528. MR 0354514 (50:6992)
 [6]
 BRYANT TUCKERMAN, "The 24th Mersenne prime," Proc. Nat. Acad. Sci. U.S.A., v. 68, 1971, pp. 23192320. MR 0291072 (45:166)
 [7]
 H. C. WILLIAMS & J. S. JUDD, "Some algorithms for prime testing using generalized Lehmer functions," Math. Comp., v. 30, 1976, pp. 867886. MR 0414473 (54:2574)
 [8]
 H. C. WILLIAMS, "Some primes with interesting digit patterns," Math. Comp., v. 32, 1978, pp. 13061310. MR 0480311 (58:484)
 [9]
 H. C. WILLIAMS, "Primality testing on a computer," Ars Combinatoria, v. 5, 1978, pp. 127185. MR 504864 (80d:10002)
 [10]
 M. C. WUNDERLICH & J. L. SELFRIDGE, "A design for a number theory package with an optimized trial division routine," Comm. ACM, v. 17, 1974, pp. 272276.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A25
Retrieve articles in all journals
with MSC:
10A25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905379807
PII:
S 00255718(1979)05379807
Article copyright:
© Copyright 1979
American Mathematical Society
