Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Arithmetic progressions consisting only of primes


Authors: Emil Grosswald and Peter Hagis
Journal: Math. Comp. 33 (1979), 1343-1352
MSC: Primary 10L20; Secondary 10H25
MathSciNet review: 537981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {N_m}(x)$ denote the number of arithmetic progressions consisting of m primes with largest member not exceeding x. $ {N_m}(x)$ has been tabulated for $ 3 \leqslant m \leqslant 10$ and selected values of x between 1000 and 50000, and the results are compared here with those obtained by (heuristic) asymptotic approximations to $ {N_m}(x)$.


References [Enhancements On Off] (What's this?)

  • [1] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} \pm 4{x^2} + 3x \pm 1$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 184-191.
  • [2] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} \pm 57$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 191-194.
  • [3] W. A. GOLUBEV, "Faktorisation der Zahlen der Formen $ {x^3} \pm 83$ und $ {x^3} \pm 92009$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 297-301.
  • [4] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} + 4{x^2} - 25x + 13$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1970, pp. 106-112.
  • [5] E. GROSSWALD, "Arithmetic progressions of primes." (To appear.)
  • [6] G. H. HARDY & J. E. LITTLEWOOD, "Some problems of 'Partitio Numerorum'; III: On the expression of a number as a sum of primes," Acta Math., v. 44, 1922, pp. 1-70. MR 1555183
  • [7] E. KARST, "12 to 16 primes in arithmetical progression," J. Recreational Math., v. 2, 1969, pp. 214-215. MR 0252345 (40:5566)
  • [8] E. KARST, "Lists of ten or more primes in arithmetical progression," Scripta Math., v. 28, 1970, pp. 313-317.
  • [9] E. KARST & S. C. ROOT, "Teilfolgen von Primzahlen in arithmetischer Progression," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1972, pp. 19-20. MR 0409326 (53:13086a)
  • [10] S. C. ROOT &. E. KARST, "Mehr Teilfolgen von Primzahlen in arithmetischer Progression," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1972, pp. 178-179. MR 0409327 (53:13086b)
  • [11] S. WEINTRAUB, "Seventeen primes in arithmetic progression," Math. Comp., v. 31, 1977, p. 1030. MR 0441849 (56:240)
  • [12] S. WEINTRAUB, "Primes in arithmetic progression," BIT, v. 17, 1977, pp. 239-243. MR 0491446 (58:10695)
  • [13] D. ZAGIER, Private communication.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10L20, 10H25

Retrieve articles in all journals with MSC: 10L20, 10H25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0537981-9
Article copyright: © Copyright 1979 American Mathematical Society