Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Arithmetic progressions consisting only of primes


Authors: Emil Grosswald and Peter Hagis
Journal: Math. Comp. 33 (1979), 1343-1352
MSC: Primary 10L20; Secondary 10H25
DOI: https://doi.org/10.1090/S0025-5718-1979-0537981-9
MathSciNet review: 537981
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {N_m}(x)$ denote the number of arithmetic progressions consisting of m primes with largest member not exceeding x. $ {N_m}(x)$ has been tabulated for $ 3 \leqslant m \leqslant 10$ and selected values of x between 1000 and 50000, and the results are compared here with those obtained by (heuristic) asymptotic approximations to $ {N_m}(x)$.


References [Enhancements On Off] (What's this?)

  • [1] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} \pm 4{x^2} + 3x \pm 1$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 184-191.
  • [2] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} \pm 57$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 191-194.
  • [3] W. A. GOLUBEV, "Faktorisation der Zahlen der Formen $ {x^3} \pm 83$ und $ {x^3} \pm 92009$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1969, pp. 297-301.
  • [4] W. A. GOLUBEV, "Faktorisation der Zahlen der Form $ {x^3} + 4{x^2} - 25x + 13$," Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. Kl., 1970, pp. 106-112.
  • [5] E. GROSSWALD, "Arithmetic progressions of primes." (To appear.)
  • [6] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, https://doi.org/10.1007/BF02403921
  • [7] R. F. Faĭziev, The number of integers, expressible in the form of a sum of two primes, and the number of 𝑘-twin pairs, Dokl. Akad. Nauk Tadžik. SSR 12 (1969), no. 2, 12–16 (Russian, with Tajiki summary). MR 0252345
  • [8] E. KARST, "Lists of ten or more primes in arithmetical progression," Scripta Math., v. 28, 1970, pp. 313-317.
  • [9] Edgar Karst and S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. 1 (1972), 19–20. MR 0409326
    S. C. Root and Edgar Karst, Mehr Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. 8 (1972), 178–179. MR 0409327
  • [10] Edgar Karst and S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. 1 (1972), 19–20. MR 0409326
    S. C. Root and Edgar Karst, Mehr Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. 8 (1972), 178–179. MR 0409327
  • [11] Sol Weintraub, Seventeen primes in arithmetic progression, Math. Comp. 31 (1977), no. 140, 1030. MR 0441849, https://doi.org/10.1090/S0025-5718-1977-0441849-4
  • [12] Sol Weintraub, Primes in arithmetic progression, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), no. 2, 239–243. MR 0491446
  • [13] D. ZAGIER, Private communication.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10L20, 10H25

Retrieve articles in all journals with MSC: 10L20, 10H25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0537981-9
Article copyright: © Copyright 1979 American Mathematical Society