Sets of Integers With No Long Arithmetic Progressions Generated by the Greedy Algorithm

By Joseph L. Gerver and L. Thomas Ramsey

Abstract. Let S_k be the set of positive integers containing no arithmetic progression of k terms, generated by the greedy algorithm. A heuristic formula, supported by computational evidence, is derived for the asymptotic density of S_k in the case where k is composite. This formula, with a couple of additional assumptions, is shown to imply that the greedy algorithm would not maximize $\sum_{n \in S} 1/n$ over all S with no arithmetic progression of k terms. Finally it is proved, without relying on any conjecture, that for all $\varepsilon > 0$, the number of elements of S_k which are less than n is greater than $(1 - \varepsilon)\sqrt{2n}$ for sufficiently large n.

Szekeres [1] conjectured that if S is a set of positive integers such that $\sum_{n \in S} 1/n$ diverges, then S contains arithmetic progressions with an arbitrary (finite) number of terms. As Erdös has pointed out, this conjecture would imply that for each integer $k \geqslant 3$, there exists

$$A_k = \sup_{S \in S_k} \sum_{n \in S} 1/n,$$

where $S_k = \{S \subset \mathbb{Z}^+: S \text{ contains no arithmetic progression of } k \text{ terms}\}$.

Gerver [2] showed that for every integer $k \geqslant 3$, there exists a set $S_k \in S_k$ such that

$$\sum_{n \in S_k} 1/n = \lfloor 1 + o(1) \rfloor k \log k$$

for large k. In the case where k is prime, these S_k are generated recursively by the greedy algorithm; i.e., $n \in S_k$ if and only if $\{m \in S_k: m < n - 1\} \cup \{n\}$ contains no arithmetic progression of k terms.

For the rest of this paper we let S_k be the set of positive integers with no arithmetic progression of k terms, generated by the greedy algorithm, regardless of whether k is prime or composite. We let $s_k(n)$ be the nth element of S_k, and let $\sigma_k(n)$ be the number of elements of S_k less than or equal to n.

We will investigate here the sets S_k in the case where k is composite. We derive heuristically a formula for the asymptotic density of such S_k, and show that this formula implies that for large k

$$\sum_{n \in S_k} 1/n = \lfloor 1 + o(1) \rfloor k.$$
In other words, in the case where \(k \) is composite, we conjecture that the greedy algorithm does not maximize \(\sum 1/n \). We then present some computational evidence in support of this formula. Finally, we prove, without relying on any conjecture, that for all \(k \geq 3 \), and all \(\epsilon > 0 \),

\[
\sigma_k(n) > (1 - \epsilon)\sqrt{2n}
\]

for sufficiently large \(n \).

Now when \(k \) is prime, \(S_k \) has a great deal of structure. In fact, if you subtract one from each element of \(S_k \), you end up with the set of all nonnegative integers which do not contain the digit \(k - 1 \) when written in base \(k \). This follows easily from the Chinese remainder theorem. On the other hand, there is no obvious reason, when \(k \) is composite, that \(S_k \) should exhibit any particular structure.

To investigate this matter, we computed \(S_4 \) up to \(2^{16} \) and \(S_6 \) up to \(2^{5000} \). In both cases, at first glance, the elements appear to be distributed randomly. For example, the elements of \(S_4 \) below 100 are

\[
1, 2, 3, 5, 6, 8, 9, 10, 15, 16, 17, 19, 26, 27, 29, 30, \\
31, 34, 37, 49, 50, 51, 53, 54, 56, 57, 58, 63, 65, 66, \\
67, 80, 87, 88, 89, 91, 94, 99,
\]

and between 20000 and 20100 are

\[
20011, 20012, 20020, 20021, 20023, 20050, 20063, 20072, 20084,
\]

while the elements of \(S_6 \) below 100 are

\[
1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, \\
20, 22, 23, 24, 25, 26, 33, 34, 35, 36, 37, 39, 43, 44, \\
45, 46, 47, 49, 50, 51, 52, 59, 60, 62, 63, 64, 65, 66, \\
68, 69, 71, 73, 77, 85, 87, 88, 89, 90, 91, 93, 96, 97, \\
98, 99,
\]

and between 20000 and 20100 are

\[
20010, 20011, 20017, 20025, 20028, 20034, 20038, 20052, \\
20058, 20060, 20061, 20069, 20079, 20080, 20082, 20085, \\
20093, 20095, 20098.
\]

We confirmed this initial impression by subjecting \(S_4 \) to a number of tests for randomness. For example, let \(X_i \) be the number of elements in \(S_4 \) between \(60000 + 50(i - 1) + 1 \) and \(60000 + 50i \) inclusive for \(1 \leq i \leq 100 \). If \(S_4 \) is pseudorandom, \(X_i \) should have approximately a Poisson distribution. Below we compare the number of times that \(X_i = r \) with the probability that \(X_i = r \) assuming a Poisson distribution with \(\lambda = 2.5 \) (the sample mean \(\bar{X} \) is 2.49).
This result is in sharp contrast to the case of S_k where k is prime. In that case X_i would generally have a bimodal distribution whose shape would be quite sensitive to our arbitrary choice of the parameters 60000, 50, and 100.

Likewise the distribution of gaps $s_4(n) - s_4(n - 1)$ is relatively smooth for $s_4(n) < 2^{15}$, viz.:

<table>
<thead>
<tr>
<th>gap</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
<th>138</th>
<th>>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>220</td>
<td>196</td>
<td>154</td>
<td>181</td>
<td>138</td>
<td>121</td>
<td>129</td>
<td>103</td>
<td>104</td>
<td>95</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

On the other hand, if k is prime, $s_k(n) - s_k(n - 1)$ must be equal to $(k^m - 1)/(k - 1) + 1$ for some nonnegative integer m.

Finally, the elements of S_4 appear to be randomly distributed among the congruence classes mod m for $m \leq 8$. We list below the number of elements of S_4 less than 2^{11} which are congruent to c mod m.

<table>
<thead>
<tr>
<th>m</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>174</td>
<td>115</td>
<td>91</td>
<td>62</td>
<td>56</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td>177</td>
<td>113</td>
<td>96</td>
<td>71</td>
<td>62</td>
<td>54</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>123</td>
<td>82</td>
<td>63</td>
<td>67</td>
<td>47</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>82</td>
<td>68</td>
<td>59</td>
<td>56</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>51</td>
<td>58</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>55</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Again this is in sharp contrast to the case where k is prime, and elements of S_k are never divisible by k.

We now derive heuristically an asymptotic formula for $\sigma_k(n)$, on the assumption that the elements of S_k are suitably "random".

Let $f_k(n)$ be the characteristic function of S_k. It will be helpful in what follows to think of $f_k(n)$ as the probability that $n \in S_k$. Now consider an arithmetic progression of positive integers whose kth term is n. Such a progression must be of the form \{ $n - (k - 1)r, n - (k - 2)r, \ldots, n - r, n$ \}, where r is a positive integer less than or
equal to \((n - 1)/(k - 1)\). The probability that the first \(k - 1\) terms of this progression are all in \(S_k\) is

\[
\prod_{i=1}^{k-1} f_k(n - ir).
\]

Now \(n \in S_k\) if and only if there exists no positive integer \(r \leq (n - 1)/(k - 1)\) such that \(n - (k - 1)r, n - (k - 2)r, \ldots, n - r\) are all in \(S_k\). Therefore, \(f_k\) satisfies the functional equation

\[
f_k(n) = \prod_{i=1}^{(n-1)/(k-1)} \left[1 - \prod_{i=1}^{k-1} f_k(n - ir) \right].
\]

Equivalently, if we allow operations with \(-\infty\), we have

\[
\log f_k(n) = \sum_{r=1}^{(n-1)/(k-1)} \log \left[1 - \prod_{i=1}^{k-1} f_k(n - ir) \right].
\]

We conjecture that when \(k\) is composite, \(f_k(n)\) can be approximated by a continuous function \(\varphi_k(x)\) which satisfies a nearly identical equation, viz.

\[
(1) \quad \log \varphi_k(x) = \int_0^{x/(k-1)} \log \left[1 - \prod_{i=1}^{k-1} \varphi_k(x - ir) \right] dr.
\]

Specifically, we conjecture that \(\sigma_k(n) \sim \int_0^n \varphi_k(x) \, dx\), where \(\varphi_k\) is the unique function satisfying (1). The justification for this conjecture is that, since the elements of \(S_k\) are distributed practically at random on a local scale, it should be possible to smooth out \(f_k\) and interpret it literally as a probability, without altering the large scale behavior of \(\sigma_k\).

We can find an asymptotic formula for \(\varphi_k(x)\) if we assume that there exists a real number \(p\), with \(-1 < p < 0\), such that for all \(\varepsilon > 0\), \(x^{p+\varepsilon} < \varphi_k(x) < x^{p+\varepsilon}\) for sufficiently large \(x\). Then

\[
\log \varphi_k(x) \sim -\int_0^{x/(k-1)} \prod_{i=1}^{k-1} \varphi_k(x - ir) \, dr
\]

\[
= -\varphi_k(x)^{k-1} \int_0^{x/(k-1)} \prod_{i=1}^{k-1} \frac{\varphi_k(x - ir)}{\varphi_k(x)} \, dr
\]

\[
\sim -\varphi_k(x)^{k-1} \int_0^{x/(k-1)} \prod_{i=1}^{k-1} \left(\frac{x - ir}{x} \right)^p \, dr
\]

\[
= -x \varphi_k(x)^{k-1} \int_0^{1/(k-1)} \prod_{i=1}^{k-1} (1 - it)^p \, dt.
\]

It follows that \(p = -1/(k - 1)\) and

\[
\varphi_k(x) \sim x^{-1/(k-1)}(\log x)^{1/(k-1)}
\]

\[
\cdot \left[\int_0^{1/(k-1)} \prod_{i=1}^{k-1} (1 - it)^{-1/(k-1)} dt \right]^{-1/(k-1)} (k - 1)^{-1/(k-1)}.
\]
Finally, we have, if our conjecture is true,

\[\sigma_k(n) \sim n^{(k-2)/(k-1)}(\log n)^{1/(k-1)} \]

(2)

\[\cdot \left[\int_0^{1/(k-1)} \prod_{i=1}^{k-1} (1 - it)^{-1/(k-1)} \, dt \right]^{-1/(k-1)} \]

\[\frac{1}{(k-1)^{(k-2)/(k-1)}}(k-2)^{-1}. \]

We now examine the behavior of \(\varphi_k(x) \) as \(k \) tends to infinity. First, note that \(\Pi_{i=1}^{k-1} (1 - it) \) is a positive, monotonically decreasing function of \(t \), and its derivative is monotonically increasing, over the interval \([0, 1/(k-1)]\). At \(t = 1/(k-1) \), the derivative of \(\Pi_{i=1}^{k-1} (1 - it) \) with respect to \(t \) is \(- (k-2)\sqrt{(k-1)k^{-3}}\). It follows that for \(0 < t < 1/(k-1) \), we have

\[(k-2)!/(k-1)^{(k-3)}[(k-1)^{-1} - t] < \prod_{i=1}^{k-1} (1 - it) < (k-1)[(k-1)^{-1} - t] \]

and, for large \(k \),

\[[(k-1)^{-1} - t]^{-1/(k-1)} \leq \prod_{i=1}^{k-1} (1 - it)^{-1/(k-1)} \leq e[(k-1)^{-1} - t]^{-1/(k-1)}. \]

Therefore, as \(k \) tends to infinity,

\[k \leq \int_0^{1/(k-1)} \prod_{i=1}^{k-1} (1 - it)^{-1/(k-1)} \, dt \leq ek \]

and

\[\lim_{k \to \infty} \lim_{x \to \infty} \varphi_k(x)/x^{-1/(k-1)}(\log x)^{1/(k-1)} = 1. \]

This in itself tells us nothing about \(\int_1^\infty \varphi_k(x)x^{-1} \, dx \). However, suppose that \(\varphi_k(x)/x^{-1/(k-1)}(\log x)^{1/(k-1)} \) converges to 1 as \(k \) and \(x \) simultaneously tend to infinity; i.e., suppose that for all \(\epsilon > 0 \), there exists \(M \) such that if \(k \) and \(x \) are both greater than \(M \), then \(|1 - \varphi_k(x)/x^{-1/(k-1)}(\log x)^{1/(k-1)}| < \epsilon \). Then, since \(0 < \varphi_k(x) \leq 1 \) for all \(x \) and \(k \), we would have

\[\lim_{k \to \infty} \frac{1}{k} \int_1^\infty \varphi_k(x)x^{-1} \, dx = 1. \]

Finally, if we are to evaluate \(\Sigma_{n \in S_k} 1/n \), we must make an additional conjecture, namely that as \(n \) tends to infinity, \(\sigma_k(n)^{-1} \int_0^n \varphi_k(x) \, dx \) converges to 1 uniformly for all composite \(k \). This is reasonable, because if the elements of \(S_k \) were assigned at random, with the probability that \(n \in S_k \) equal to \(\varphi_k(n) \), we would have, with probability 1,

\[\sigma_k(n) = y + O(\sqrt[\log y]{y}), \]

where \(y = \int_0^n \varphi_k(x) \, dx < n \). This conjecture, along with the others we have made, implies

\[\sum_{n \in S_k} 1/n = [1 + o(1)] \int_1^\infty \varphi_k(x)x^{-1} \, dx = [1 + o(1)]k. \]
We present below the values of $a_4(n)$ and $a_6(n)$ predicted by (2) and the actual computed values of these functions for n equal to all the powers of 2 from 2^6 to 2^{16}. We also include the sum of the reciprocals of the elements of S_4 (respectively S_6) up to n.

<table>
<thead>
<tr>
<th>n</th>
<th>$1.195 n^{2/3} (\log n)^{1/3}$</th>
<th>$a_4(n)$ ratio $\Sigma 1/n$</th>
<th>$1.121 n^{4/5} (\log n)^{1/5}$</th>
<th>$a_6(n)$ ratio $\Sigma 1/n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^6</td>
<td>30.75</td>
<td>.911</td>
<td>3.175</td>
<td>1.121</td>
</tr>
<tr>
<td>2^7</td>
<td>51.38</td>
<td>.895</td>
<td>3.371</td>
<td>.992</td>
</tr>
<tr>
<td>2^8</td>
<td>85.28</td>
<td>.868</td>
<td>3.525</td>
<td>.983</td>
</tr>
<tr>
<td>2^9</td>
<td>140.8</td>
<td>.888</td>
<td>3.667</td>
<td>.929</td>
</tr>
<tr>
<td>2^{10}</td>
<td>231.5</td>
<td>.911</td>
<td>3.786</td>
<td>.993</td>
</tr>
<tr>
<td>2^{11}</td>
<td>379.3</td>
<td>.925</td>
<td>3.881</td>
<td>.983</td>
</tr>
<tr>
<td>2^{12}</td>
<td>619.8</td>
<td>.926</td>
<td>3.957</td>
<td>.983</td>
</tr>
<tr>
<td>2^{13}</td>
<td>1011</td>
<td>.926</td>
<td>4.019</td>
<td>.986</td>
</tr>
<tr>
<td>2^{14}</td>
<td>1644</td>
<td>.925</td>
<td>4.070</td>
<td>.980</td>
</tr>
<tr>
<td>2^{15}</td>
<td>2670</td>
<td>.935</td>
<td>4.112</td>
<td>.986</td>
</tr>
<tr>
<td>2^{16}</td>
<td>4332</td>
<td>.941</td>
<td>4.145</td>
<td></td>
</tr>
</tbody>
</table>

Extrapolating from the above figures, we can estimate $\Sigma_{n \in S_4} 1/n \approx 4.3$ and $\Sigma_{n \in S_6} 1/n \approx 6.9$. For comparison, $\Sigma_{n \in S_3} 1/n = 3.007$ and $\Sigma_{n \in S_5} 1/n = 7.866$. So S_4 may maximize $\Sigma_{n \in S} 1/n$ for $S \subseteq S_4$, but S_6 apparently does not maximize $\Sigma_{n \in S} 1/n$ for $S \subseteq S_6$ (since $S_5 \subseteq S_6$), nor presumably does S_k maximize $\Sigma_{n \in S} 1/n$, $S \subseteq S_k$, for any composite k greater than 6.

We now derive a lower bound for the asymptotic density of S_k.

Theorem. For all integers $k \geq 3$ and real $\epsilon > 0$, there exists an integer n_0 such that for all $n > n_0$,

$$a_k(n) > (1 - \epsilon)\sqrt{2n}.$$

Proof. Suppose the contrary. Then there exist arbitrarily large n such that the number of positive integers less than n which are not in S_k is greater than $n - \sqrt{2n}$, which is greater than $(1 - \delta)n$ for arbitrarily small δ. Now every positive integer which is not in S_k is the kth term of an arithmetic progression of which the first $k - 1$ terms (and in particular the first two terms) are in S_k. But the kth term of an arithmetic progression is uniquely determined by the first two terms. Therefore, if $a_k(n) \leq (1 - \epsilon)\sqrt{2n}$ for some $k \geq 3$, and some sufficiently large n, then

$$(1 - \delta)n \leq \left(\frac{a_k(n)}{2} \right) = \frac{1}{2} [a_k(n)^2 - a_k(n)]$$
for δ arbitrarily close to zero, and

\[\sigma_k(n) > \frac{1}{2} + \sqrt{\frac{1}{4} + 2(1 - \delta)n} > (1 - \varepsilon)\sqrt{2n} \]

for ε arbitrarily close to zero. This contradiction establishes the theorem.

Remark. We can generalize our conjecture about the asymptotic density of \(S_k \) as follows: Let \(A = A_1^0 \) be any set of \(k \) integers, and let \(\omega \) be the largest element of \(A \). Let \(A_x = \{ax + y: a \in A\} \), and let \(S_A = \{S \subset Z^+: \forall x \in Z^+, \forall y \in Z, A_x \cap S\} \). Thus, if \(A = \{1, 2, \ldots, k\} \), then \(S_A = S_k \), the set of all sets of positive integers containing no arithmetic progression of \(k \) terms. In general, the elements of \(S_A \) avoid containing a certain geometric pattern of integers. Let \(S_A \) be the element of \(S_A \) generated by the greedy algorithm, and let \(\sigma_A(n) \) be the number of elements of \(S_A \) less than \(n \). We conjecture that for "most" \(A \),

\[
\sigma_A(n) \sim n^{(k-2)/(k-1)}(\log n)^{1/(k-1)} \cdot \left(\prod_{i \in A} [1 - (\omega - i)t]^{-1/(k-1)} dt \right)^{-1/(k-1)} (k - 1)^{(k-2)/(k-1)}(k - 2)^{-1}.
\]

It would be interesting to find examples of sets \(A \) for which the above is false other than arithmetic progressions with a prime number of terms.

Department of Mathematics
University of Hawaii
Honolulu, Hawaii 96822