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On the Zeros of the Riemann Zeta Function

in the Critical Strip

By Richard P. Brent

Abstract.   We describe a computation which shows that the Riemann zeta function f(s)

has exactly 75,000,000 zeros of the form a + it in the region 0 < t < 32,585,736.4;

all these zeros are simple and lie on the line o = Hi.   (A similar result for the first

3,500,000   zeros was established by Rosser, Yohe and Schoenfeld.)   Counts of the num-

ber of Gram blocks of various types and the number of failures of "Rosser's rule" are

given.

1.   Introduction.   The Riemann zeta function f(s) is the analytic function of s =

o + it defined by

Ks)= ¿ »-'
n=l

for a > 1, and by analytic continuation for o < 1, s =é 1.  Apart from "trivial" zeros

at the negative even integers, all zeros of f(s) lie in the critical strip 0 < o < 1.  The

Riemann hypothesis is the conjecture [22] that all nontrivial zeros of Ç(s) lie on the

critical line o = 54,  For the number-theoretic significance of the Riemann hypothesis

see, for example, Edwards [6] or Ingham [10].

Since f(s) = f (s), we need only consider zeros p, = a.- + it, with t, > 0. We as-

sume that the zeros p, are counted according to their multiplicities and ordered so that

0 < tj < tj+x (and Of < oj+x if t¡ = tj+x) for / > 1. By "the first n zeros of f(s)" we

mean p., ... , pn. For brevity we let H(n) denote the statement that the first n zeros

of Ç(s) are simple and lie on the critical line. Thus, H(n) holds for arbitrarily large n if

and only if the Riemann hypothesis is true and all zeros of f(s) are simple.

In the era of hand computation, Gram [7], Backhand [2], Hutchinson [9], and

Titchmarsh and Comrie [26] established -7(10), #(79), #(138) and #(1,041), respec-

tively.   For a description of these computations see Edwards [6].

D. H. Lehmer [13], [14] performed the first extensive computation of zeros of

Ç(s) on a digital computer and established #(25,000).  Using similar methods, Meiler

[16], Lehman [11], and Rosser, Yohe and Schoenfeld [23] established #(35,337),

#(250,000), and #(3,500,000), respectively.

Using essentially the method introduced by Lehmer, we have established

#(75,000,001). Moreover, there are precisely 75,000,000 zeros with 0 < tf <

32,585,736.4.  The computational method is outlined in Section 4, and additional
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details are given in Section 5.  In Section 6 the results are summarized and various sta-

tistics regarding the distribution of the zeros are tabulated.  Preliminary results are given

in Sections 2 and 3.

2.  Properties of f(s).  In this section we summarize some well-known properties

of f(s) which form the basis for the computational method described in Section 4.

2.1. The Functional Equation for f(s).  f(s) satisfies a functional equation which

may be written in the form

|(s) = f(i-4
where

Us) - n~s/2r(s/2)Us).

It follows that, if

(2.1) 0(f) = arg [n-1/2itr(Y4 + Vàt)] = I [In r(»/4 + Vat)] - "At In it,

then

(2.2) Z(t) = exp[i6(t)]^Á + it)

is real for real t. Thus, simple zeros of f(s) on the critical line can be located by find-

ing changes of sign of Z(t).  (The first few zeros of Z(t) are r. = 14.1347, t2 =

21.0220, t3 = 25.0109, ... ; see Haselgrove and Miller [8].)

2.2. The Asymptotic Expansion for 9(t).  From (2.1) and Stirling's formula for

In r(s/2), we obtain the following asymptotic expansion for the phase 9(t):

(2.3) „(0 - * ,„(-4) -*- f +   ±   B-^p >-» ♦ rnW,

where B2 = 1/6, BA = -1/30, ... are Bernoulli numbers, and

(2n)!

(27r)2n+2r2

for all r > 0 and n > 0.

d(t) has a minimum of approximately -3.53 near t = 2tt, and is monotonie in-

creasing for t > 7.  For m > -1, we define the wth Gram point gm to be the unique

solution in [7, °°) of

(2.4) 0(gm) = mn.

Thus,£_. = 9.6669, g0 = 17.8456, £. = 23.1703, ....

2.3. The Euler-Maclaurin Formula for f(s).  f(s) may be calculated to any de-

sired accuracy by taking m and n large enough in the Euler-Maclaurin formula

n-l m1_î m

(2.5) ¡¡(s) =   £ H + %n~* + — +    Z  Tk,n(s) + Fm,M
/ = 1 k = 1

where

B2k       . _.     2^2

M0K—¿^TT+expi-.O

*■*-»-öS "M* n0(^/)
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and

l**,„(*)l < l^m+ !,„(*)(s + 2m + 0/(0 + 2W + 1)|

for all m > 0, n > 1, and o = R(s) > -(2m + 1).

If (2.5) is used to obtain £(.4 + /r) to within a specified absolute tolerance, then

it is necessary to take n > t/(2-n). It is also sufficient to take n - 0(t) and m — 0(t).

Thus, the computational work required is roughly proportional to t.

2.4.  The Riemann-Siegel Formula for Z(t). The Riemann-Siegel formula [5],

[6], [25] is an asymptotic expansion for Z(t) (defined by (2.2)).  The Riemann-Siegel

formula is an improvement over the Euler-Maclaurin expansion for computing Z(t) if t

is large, because the work required is 0(tVl) instead of 0(t).

Let t = tl(2ir), m = [tv*\ , and z = 2(tVi - m) - 1.  Then the Riemann-Siegel

formula with n + 1 terms in the asymptotic expansion is

m

Z(f) =    £ 2k~Vl cos [t. ln(k) - d(t)]
fc = i

(2.6)
+ (_1)W+1T-K   £   $/<2)(_i)/r-/72+jRn(r))

/=o

where

R„(t) = 0(T-(2n+3>/4)

for n > -1 and x > 0.  Here the <->,(z) are certain entire functions which may be ex-

pressed in terms of the derivatives of

%(z) h $(Z) = cos [„(^ + 3)/8]/cos(jrz).

Expressions for $.,... , $19 are given in the review of [5].  For our purposes it is

sufficient to note that

*,(z) = *(3)(z)/(12tt2)

and

*2(z) = $(2)(z)/(167r2) + $(6)(z)/(288;r4).

To establish changes of sign of Z(t) we need rigorous bounds on the error R„(t).

Titchmarsh [27, p. 331] showed that

|J?0(t)|< |r-3/l    for r> 125,

and Rosser et al. [23] used the bound

(2.7) \R2(t)\ < 2.28r~7/4    for r > 2000.*

This bound is extremely conservative; computation of maxze[_.,] |<ï>;(z)| for

/ = 3, 4, ... (and computation of R2(t) for small t) indicates that the constants 2.28

and 2000  in (2.7) may be replaced by 0.006 and 10, respectively.  In the computation

described below we took n = 2 in (2.6) and used only the weak bound

(2.8) |/-2(t)| < 3t"7/4    for r > 2000.

*The number "2.88" appearing in [23] should have been "2.28".
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The effect of rounding errors in accumulating the first sum in (2.6) was more of a

problem than the inherent error (2.8); see Section 5.

3. Gram Blocks and the Littlewood-Turing Theorem.  "Gram's law" is the obser-

vation [7] that Z(t) usually changes sign in each "Gram interval" Gf = \g.;g.-+x),f >

-1.  A plausible explanation for this is that the leading (k = 1) term in (2.6) at t = gf

is 2(-1)'.   We call a Gram point g good if (- \)'Z(g) > 0, and bad otherwise.  (The

first bad Gram point is gx26.)  The concept of "Gram blocks" was introduced by Ros-

ser et al. [23].  A "Gram block of length k" is an interval _9- = [gf,g¡+k) such that gf

and gf+k are good Gram points, g.+x, ... , gj+k-i are Dau Gram points, and k > 1. We

say that /?• satisfies "Rosser's rule" if Z(t) has at least k zeros in Ä-.  Rosser's rule fails

infinitely often [12], but it is still an extremely useful heuristic.  The first exception is

Bx3 999 s25 (see Table 3), so Lehman's conjecture [12] that Rosser's rule holds up to

£io,ooo,ooo ls correct.

Let N(T) denote the number of zeros (counted according to their multiplicities)

of f(s) in the region 0 < l(s) < T, and

(3-0 S(t) = N(t) - 1 - 8(t)/n.

It is easy to show that Gram's law holds in regions where \S(t)\ < 1, and Rosser's

rule holds in regions where \S(t)\ < 2.  Thus, the success of these heuristics is closely

related to the distribution of values of S(t); see Lehman [12].

Turing [28] showed that the following theorem, based on an idea of Little wood

[15], could be used to bound N(t) for certain values of t.   We give Lehman's version

[12] of the theorem, as Turing's constants A and B are larger than necessary, and his

proof is incorrect.

Theorem 3.1. If A = 0.114,5 = 1.71, C = 168rr, and C< u< v, then

rs(t)
Ju

dt <A.\r\(v) +B.

Since our program works with Gram blocks, the following consequence of Theo-

rem 3.1 is extremely convenient.

Theorem 3.2. If K consecutive Gram blocks with union [gn,g ) satisfy Rosser's

rule, where

(3.2) K > 0.0061 [In (gp)]2 + 0.08 In(gp),

then

(3.3) N(gn)<n+l

and

(3.4) N(gp)>p+l.

Proof.    If gn < 1687T then (3.3) certainly holds [8], and (3.4) holds because

Rosser's rule is valid in (g_x, g ).  Thus, assume that gn > I687..
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Since p - n > K, it follows from (3.2) that

(3.5) K + Vi(p -n)> 0.152 In (gp/(2Tt)) + 0.0091 [In (gp/(2n))] 2.

The result now follows from Theorem 4 of Lehman [12] (which is itself a consequence

of Theorem 3.1).

4. The Computational Method.  The first (and most expensive) part of the com-

putational verification of H(n + 1) is the location of n + 1 sign changes of Z(t) in

(g_x, gn).  Our program works in the following way.  Suppose that / + 1 sign changes

have been found in (g_,, gf), where g. is a good Gram point. Then Z(g¡+. ), Z(gJ+2),...

are evaluated until the next good Gram point gf+k is found.   The program then

evaluates Z(t) for various t GBf- [g-,gf+k), until either

(a) k sign changes are found in B-, when j is replaced by / + k and the process

continues; or

(b) after a large number of evaluations of Z(t) the program gives up and calls

for help.

Case (b) could arise because of a pair of very close zeros of Z(t) in B- (or a mul-

tiple zero), or because 2?. does not satisfy Rosser's rule.  In fact, during the computa-

tion to n = 75,000,000, case (b) occurred only 15 times.  In each case B contained

k - 2 zeros of Z(t), and the preceding or-following Gram block of length k' contained

k' + 2 zeros of Z(t); see Table 3.

In this way we found the required n + 1 sign changes, establishing that N(gn) >

n + 1. By running the computation a little further we also showed that there are

4 Gram blocks in [gn, gn + 5), and all of them satisfy Rosser's rule. Applying Theorem

3.2 gives N(gn) < n + 1. Thus, N(gn) = n + 1, and H(n + 1) holds. By locating the

nth and (n + l)th zeros, it may be shown that Ar(32,585,736.4) = n - 75,000,000, as

claimed in the abstract.

5. Computational Details.   In Section 4 we glossed over an essential point:   how

can the sign of Z(t) he determined with certainty?   If Z(t) is evaluated numerically

from the Riemann-Siegel formula (2.6), the effect of rounding errors must be considered

as well as the inherent error R„(t).

5.1. Methods for Evaluating Z(t).  It is desirable to have at least two methods

for evaluating Z(t):   a fast method which usually determines the sign of Z(t) unambig-

uously, and a slower but more accurate method which may be used if the fast method

fails.  We used the Euler-Maclaurin formula (2.5) both for small t and for checking pur-

poses, but for brevity we shall only analyze the use of the Riemann-Siegel formula

(2.6). We shall also assume that n = 2 in (2.6), and that t > 20,000.r.  Our program

uses the following two methods to evaluate the Riemann-Siegel sum

m

(5.1) s(t) =    ¿ 2/TI/2 cos [t.\n(k) - 6(t)].

k = \

Method A: The constants ln(/c), k = 1, 2, ... , are precomputed (using double-

precision) and stored in a table. For each value of k, f= frac{(l/27.)[r.ln(&) - d(t)] }

is computed using double-precision, then truncated to single-precision.  (Here fracix)
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denotes the fractional part of x.) Then cos (2irf) = cos [r.ln(A:) - 6(t)] is approximated

by a precomputed piecewise linear approximation, the result multiplied by the precom-

puted single-precision constant 2k~,/2, and the sum (5.1) accumulated in double precision.

Method B:  The same as for Method A except that all computations are done

using double-precision arithmetic, and cos (2../) is evaluated as accurately as possible.

All computations were performed on a Univac 1100/42 computer, which has a

36-bit word and hardware single- and double-precision floating-point arithmetic (using

27- and 60-bit binary fractions, respectively).

5.2. Rounding Error Analysis of Methods A and B. The analysis is similar to

that of Lehman [11] and Rosser et al. [23] so we shall omit detailed (and tedious)

proofs of the following results. Recall that m = \tVi\ > 100. Lemmas 5.1 and 5.2

are elementary, and Lemma 5.3 follows easily from them.

Lemma 5.1.

m
¿   k~V2 < 2mh < 2tv<

k = l

and
m

¿ AT* In (it) < 2mh ln(m) < ta ln(r).
/c = i

Lemma 5.2.

0(O<rrrln(T).

Lemma 5.3. Suppose that

\L(k) - \n(k)\ < 6. ln(/c)   for k = 1,2, ... ,m,

\6(t)-e(t)\<82d(t),

IcXx) - cos(x)| < 63   for 0 <x < 2n,
and

m ^

7(f) =    ¿   2k-'hc[t.L(k)-B(t)\.
fc = i

Then

\7(t) - s(t)\ < 4t.ts/4 ln(T)(ô. + S2) + 4t%&3.

Lemma 5.3 accounts for the error in the computed value of s(t), given bounds on

the relative errors in the evaluation of In (k) and 6(t) and on the absolute error in the

evaluation of cos(x).  By the techniques of backward error analysis [29], we can ac-

count for errors caused by the computation of t. L(k) - 8 (t), the computation of 2k "

and multiplication by 7(x), and the final summation, by increasing S. + S2 slightly.

Since the required change in ô. + ô2 is small, we shall omit details of the analysis.

For both Methods A and B, analysis of the algorithm used to compute double-

precision logarithms and d(t) gives the (conservative) bounds Ô. < 2-59 and S2 < 3 x

2-59.  (We assume here that  r is exactly representable as a floating-point number. This

is true in our program, where r is used rather than t in the critical computations.)
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For Method A we approximate cos (2.rx) for 0 < x < 1 using piecewise linear ap-

proximations on the intervals \jh, (j + l)h) for/ = 0, ... , 1023 and h = 2~10.  It is

easy to show that, with exact arithmetic, the approximation error is bounded by 2_227r2

< 2.36 x 10    .  Allowing for rounding errors in evaluating the linear approximations

a + bx (with \a\ < 3n/2, \b\ < 2n, 0 < x < 1) increases this bound slightly, giving S3

< 2.6 x 10~6.

For Method B it turns out that 63 is negligible, because the errors in the cosine

and logarithm evaluation are the same order of magnitude; but the error in the evalua-

tion of In (k) contributes much more to the bound on the error in 7(f) because it is

amplified by the factor t > 20,000tt.

It is possible to allow for errors in evaluating t/2 (and hence m) and the $ (z) in

(2.6), but as these contribute little to the final error bound we shall omit the details.

Collecting the results, and including the inherent error (2.8), we have the following

bounds for the error in the computed value Z(t) (rounded to single-precision) of Z(t):

{ (2 x 10~5 + 5 x 10_16Tln(T) + 3t"2)t'/4 for Method A,
(5.2)\Z(t)-Z(t)\<

(5 x 10~16Tln(T) + 3t"2)t% + 8 x 10_9|Z(i)| for Method B.

These are the bounds actually used in the program, and are weaker than could be justi-

fied by the analysis sketched above.

5.3. Efficiency Considerations.  When evaluating Z(t) our program always tries

Method A first.  If the computed \Z(t)\ is smaller than the bound (5.2), the sign of

Z(t) cannot be guaranteed, so Method B is used.  (Method B is also used once in 1000

evaluations to give a dynamic check on the consistency of the error bounds (5.2).) Oc-

casionally Method B is unable to guarantee the sign of Z(t).  If we are searching for

sign changes in a Gram block and t is not a Gram point, we simply discard t and try

another nearby point.  If t is a Gram point the sign of Z(i) must be determined to en-

sure the accuracy of Tables 1—4 below.  Thus, we occasionally use a multiple-precision

arithmetic package [4] to evaluate Z(t) accurately at Gram points.  (Actually, Method

B always gives the correct sign of Z(gn) for n < 75,000,000, even though the bound

(5.2) is too weak to guarantee this.)

Nearly all the computation time is spent in the inner loop of Method A, so not

much would be gained by speeding up Method B or increasing the accuracy of Method

A.  It also seems unlikely that the inner loop could be speeded up much without using

a faster machine, as the loop compiles into only 19 machine instructions which execute

in about 22 p sec. (The double-precision evaluation of cos(2rrx) using the standard li-

brary routine [1] takes about 79 psec, and the inner loop of Method B takes about

150 p sec.)

To separate the first 75,000,000 zeros our program evaluated Z(t) at about

106,000,000 points.  Thus, the heuristic of using Rosser's rule is very efficient-the

number of evaluations of Z(t) could not be reduced by more than 29 percent.

Our program requires about 35[«/ln(«)] Vl psec of CPU time per Gram point near

gn, n < 108.  Thus, the time required to verify H(n) is about 6.5 x I0~9n[n/ln(n)] Vl
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hours.  Our program is about 3.6 times faster than the CDC 3600 program of Rosser

et al. [23], and about 11 times faster than the IBM 7090 program of Lehman [11].

This is roughly what one would expect, given the relative speeds of the different ma-

chines.  (The times given for our program are approximate because of the variability of

factors such as the ratio of primary to extended memory references, system load, etc.)

6.   Summary of the Computational Results.   During the course of the verification

of #(75,000,001) we accumulated various statistics which are summarized in Tables 1

to 4. Table 1 gives the number J(k, n) of Gram blocks 2?. = [gf,gj+k) of length k <

7 with 0 </ < n and various n < 70,000,000.  (Note that 2?_. = [g_x, g0) and the

zero tx G 2?_. are excluded from the statistics given in Tables 1 to 4.)  No Gram

blocks of length greater than 7 were found.**  The average block length up to n =

70,000,000 is 1.1873, and increases slowly with n.   If the Z(gy) had random indepen-

dently distributed signs, then the average block length would be 2, so we conjecture that

the average block length tends to a limit À < 2 as n —► °°.

In Table 2 we give the number of Gram intervals 67, = [gf, g¡+x), 0 </ < n,

which contain exactly m zeros of Z(t), 0 < m < 4.  About 74 percent of the Gram

intervals up to « = 70,000,000 contain precisely one zero, and this percentage decreases

slowly with n.   We found only one Gram interval (6761 331)768) which contains more

than three zeros.

Table 1

Number of Gram blocks of given length

n JU.n) J(2,n) J(3,n) J(4,n) J(5,n)  J(6,n)  J(7,n)

100 100
200 194 3
500 474 13

1,000 916 42
2,000 1,766 117
5,000 4,283 348 7

10,000 8,374 780 22
20,000 16,404 1,680 76 2
50,000 39,911 4,545 325 6

100,000 78,694 9,445 779 19                    1
200,000 155,327 19,338 1,928 52                    1
500,000 382,162 49,374 6,040 230                  10

1,000,000 755,132 100,203 13,822 709                  32
2,000,000 1,493,597 202,964 30,659 2,018                84            1
5,000,000 3,683,812 513,502 85,804 7,559              294          11

10,000,000 7,297,808 1,034,545 184,107 19,115               821           36
20,000,000 14,468,638 2,079,342 390,564 46,989           2,422         151             2
30,000,000 21,596,795 3,126,675 604,103 78,370          4,491        264             4
40,000,000 28,697,661 4,176,596 821,276 112,050           6,951         387             6
50,000,000 35,780,082 5,227,670 1,041,204 147,419           9,623         514           13
60,000,000 42,844,351 6,280,945 1,263,391 184,290         12,450         668           24
70,000,000 49,898,904 7,333,132 1,487,914 222,034         15,530         849           30

"Blocks of length 8, e.g. Bx gox g94 4Q3, have been found by a different method (mentioned

at the end of Section 6).



ZEROS OF THE RIEMANN ZETA FUNCTION 1369

Table 2

Number of Gram intervals containing exactly m zeros

m = o m  = 1 m = 3 m = 4

100
200
500

1,000
2,000
5,000

10,000
20,000
50,000

100,000
200,000
500,000

1,000,000
2,000,000
5,000,000

10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
70,000,000

0
3

13
42

117
358
808

1,770
4,915

10,330
21,528
56,236

116,055
238,441
614,253

1,253,556
2,550,785
3,861,692
5,181,785
6,507,746
7,839,959
9,174,803

100
194
474
916

1,766
4,287
8,390

16,472
40,209
79,427

157,153
388,110
769,179

1,525,833
3,778,577
7,507,820

14,929,745
22,324,402
29,700,949
37,065,811
44,418,273
51,765,709

3
13
42

117
352
796

1,746
4,837

10,157
21,110
55,072

113,477
233,011
600,087

1,223,692
2,488,155
3,766,121
5,052,747
6,345,140
7,643,577
8,944,174

3
6

12

39
86

209
582

1,289
2,715
7,083

14,932
31,315
47,785
64,519
81,303
98,191

115,313

Table 3

Exceptions to Rosser's rule

_Ty^e_

13,999,525
30,783,329
30,930,927
37,592,215
40,870,156
43,628,107
46,082,042
46,875,667
49,624,541

50,799,238
55,221,454
56,948,780
60,515,663
61,331,766
69,784,844

1

1
2

1

I

1

1
1
2
1
2

2

1

2

Extreme S (O

-2.004138
-2.002594

+2.050625
-2.076426
-2.003797
-2.024243
-2.031132
-2.004600

+2.001841
-2.028778

+2.02421Ó
+2.017714
-2.008143
-2.054298

+2.063683

Type 1       is block B  of length 2 with no zeros, immediately followed by

block B    of length 1 with 3 zeros.
n+2

Type 2       is block B  of length 2 with no zeros, immediately preceded by

block B    of length 1 with 3 zeros,
n-i

Type 3       is block B  of length 2 with no zeros, immediately followed by

block B    of length 2 with 4 zeros.
n+2

All exceptions to Rosser's rule up to B
75,000,000

are included.
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Table 4

First occurrences of Gram blocks of various types

j k

133
125

3,356
2,144
4,921

83,701
39,889
18,243
67,433

1,833,652
243,021
601,944

68,084
455,256

20,046,223
2,656,216
4,718,714
1,181,229
2,842,089

19,986,469

13,869,654
17,121,221
37,091,042
20,641,464
52,266,282

B  is the first Gram block of type  (j,k)

In Table 3 we list the 15 exceptions to Rosser's rule up to 2?7S 000 000.  Each

exception is associated with a small region where \S(t)\ exceeds 2, and the table gives

the local extreme values of S(t).  Selberg [24] has shown that

5(r) = í2±[(lní)1/3(lnlnr)-7/3],

and, assuming the Riemann hypothesis, Montgomery [19] has shown that

S(t) = -2±[(ln t)V2(ln In t)~%].

Probably

0 < lim sup \S(t)\/(\n tf2 < °°;

see Lehman [12].  Unfortunately, it appears that the "interesting" region where \S(t)\

greatly exceeds 2 is well outside the range of feasible computation by the Riemann-

Siegel formula, even by the method suggested at the end of this section.

Let Bm = [gm, gm + ) be a Gram block which satisfies Rosser's rule and has

length/ > 2. We say that Bm is of type (/, k) if 1 < k </ and [gm+k-i,gm+k) con-

tains at least two zeros of Z(t).  This is neither an unambiguous nor a complete classifi-

cation, but it is sufficient to deal with all nontrivial Gram blocks up to 2?7S 000 000,
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except for those noted in Table 3.  The first occurrences of Gram blocks of various

types are noted in Table 4.  No blocks of type (7, 1) or (7, 7) occur up to Bls 000 000.

Our program did not explicitly search for pairs of close zeros of Z(t), but we did

detect some such pairs when the program had difficulty in finding the expected num-

ber of sign changes in the Gram block containing them.   For example,

tn+x -tn< 0.00053    and max      \Z(t)\ < 0.00000248
ie(fn'fM + l)

for n = 41,820,581.  This is a more extreme example of the phenomenon first observed

by Lehmer [13], [14].  See also Montgomery [17], [18], [20], [21].

Our program regularly printed out the largest value of \Z(g)\ found so far.  For

example, Z(g10 354 406) > 79.6, and the first 72 terms in the Riemann-Siegel sum

(5.1) are positive at this point !

In all cases where an exception to Rosser's rule was observed, there was a large

local maximum of \Z(t)\ nearby.  This suggests that "interesting" regions might be pre-

dicted by finding values of t such that the first few terms in the Riemann-Siegel sum

reinforce each other.  Preliminary computations suggest that this is a promising ap-

proach.  To verify the feasibility of such computations for Gram numbers near 1010

we ran our program (slightly modified) from ¿f„_s00 tO£„+ioioo> where n = 1010.

All 8622 Gram blocks in this region satisfy Rosser's rule and, using Theorem 3.2, we

can show that P„, Pn+X, ■■■ , Pn+10000 are simPie and lie on tne critical line.
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Added in Proof.   By June 1, 1979 we had verified #(81,000,001) and discovered

three exceptions to Rosser's rule in addition to those given in Table 3.
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