Monotone difference approximations for scalar conservation laws

Authors:
Michael G. Crandall and Andrew Majda

Journal:
Math. Comp. **34** (1980), 1-21

MSC:
Primary 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551288-3

MathSciNet review:
551288

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete self-contained treatment of the stability and convergence properties of conservation-form, monotone difference approximations to scalar conservation laws in several space variables is developed. In particular, the authors prove that general monotone difference schemes always converge and that they converge to the physical weak solution satisfying the entropy condition. Rigorous convergence results follow for dimensional splitting algorithms when each step is approximated by a monotone difference scheme.

The results are general enough to include, for instance, Godunov's scheme, the upwind scheme (differenced through stagnation points), and the Lax-Friedrichs scheme together with appropriate multi-dimensional generalizations.

**[1]**PH. BENILAN,*Equation d'Evolution dans un Espace de Banach Quelconque*, Thesis, Université de Orsay, 1972.**[2]**Samuel Z. Burstein, Peter D. Lax, and Gary A. Sod (eds.),*Lectures on combustion theory*, New York University, Courant Mathematics and Computing Laboratory, New York, 1978. Lectures given in a Seminar held during spring semester at the Courant Institute, New York University, New York, 1977. MR**522091****[3]**Edward Conway and Joel Smoller,*Clobal solutions of the Cauchy problem for quasi-linear first-order equations in several space variables*, Comm. Pure Appl. Math.**19**(1966), 95–105. MR**0192161**, https://doi.org/10.1002/cpa.3160190107**[4]**Michael G. Crandall,*The semigroup approach to first order quasilinear equations in several space variables*, Israel J. Math.**12**(1972), 108–132. MR**0316925**, https://doi.org/10.1007/BF02764657**[5]**M. G. CRANDALL & L. TARTAR, "Some relations between non expansive and order preserving mappings." (To appear.)**[6]**A. DOUGLIS,*Lectures on Discontinuous Solutions of First Order Nonlinear Partial Differential Equations in Several Space Variables*, North British Symposium on Partial Differential Equations, 1972.**[7]**Nelson Dunford and Jacob T. Schwartz,*Linear Operators. I. General Theory*, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR**0117523****[8]**S. K. GODUNOV, "Finite difference methods for numerical computations of discontinuous solution of equations of fluid dynamics,"*Mat. Sb.*, v. 47, 1959, pp. 271-295. (Russian)**[9]**Amiram Harten,*The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws*, Comm. Pure Appl. Math.**30**(1977), no. 5, 611–638. MR**0438730**, https://doi.org/10.1002/cpa.3160300506**[10]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[11]**Gray Jennings,*Discrete shocks*, Comm. Pure Appl. Math.**27**(1974), 25–37. MR**0338594**, https://doi.org/10.1002/cpa.3160270103**[12]**Kiyofumi Kojima,*On the existence of discontinuous solutions of the Cauchy problem for quasi-linear first-order equations*, Proc. Japan Acad.**42**(1966), 705–709. MR**0212352****[13]**S. N. KRUŽKOV, "First order quasilinear equations with several space variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[14]**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****[15]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[16]**A. Y. le Roux,*A numerical conception of entropy for quasi-linear equations*, Math. Comp.**31**(1977), no. 140, 848–872. MR**0478651**, https://doi.org/10.1090/S0025-5718-1977-0478651-3**[17]**Michael Crandall and Andrew Majda,*The method of fractional steps for conservation laws*, Numer. Math.**34**(1980), no. 3, 285–314. MR**571291**, https://doi.org/10.1007/BF01396704**[18]**Andrew Majda and Stanley Osher,*Numerical viscosity and the entropy condition*, Comm. Pure Appl. Math.**32**(1979), no. 6, 797–838. MR**539160**, https://doi.org/10.1002/cpa.3160320605**[19]**Shinnosuke Ôharu and Tadayasu Takahashi,*A convergence theorem of nonlinear semigroups and its application to first order quasilinear equations*, J. Math. Soc. Japan**26**(1974), 124–160. MR**0341216**, https://doi.org/10.2969/jmsj/02610124**[20]**O. A. OLEĪNIK, "Discontinuous solutions of nonlinear differential equations,"*Amer. Math. Soc. Transl.*(2), v. 26, 1963, pp. 95-172.**[21]**Gilbert Strang,*On the construction and comparison of difference schemes*, SIAM J. Numer. Anal.**5**(1968), 506–517. MR**0235754**, https://doi.org/10.1137/0705041**[22]**A. I. Vol′pert,*Spaces 𝐵𝑉 and quasilinear equations*, Mat. Sb. (N.S.)**73 (115)**(1967), 255–302 (Russian). MR**0216338****[23]**N. N. KUZNECOV & S. A. VOLOŠIN, "On monotone difference approximations for a first-order quasi-linear equation,"*Soviet Math. Dokl.*, v. 17, 1976, pp. 1203-1206.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05

Retrieve articles in all journals with MSC: 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551288-3

Keywords:
Conservation laws,
shock waves difference approximations,
entropy conditions

Article copyright:
© Copyright 1980
American Mathematical Society