Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the roles of ``stability'' and ``convergence'' in semidiscrete projection methods for initial-value problems


Author: Seymour V. Parter
Journal: Math. Comp. 34 (1980), 127-154
MSC: Primary 65N35; Secondary 34G99
DOI: https://doi.org/10.1090/S0025-5718-1980-0551294-9
MathSciNet review: 551294
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the initial value problem (1.1)

$\displaystyle \frac{d}{{dt}}u(t) = Au(t) + f(t),\quad t > 0,$

(1.2)

$\displaystyle u(0) = {u_0},$

where A is a linear operator taking $ D(A) \subset X$ into X, where X is a Banach space. Consider also semidiscrete numerical methods of the form: find $ {U_N}(t):[0,T] \to {X_N}$ such that $ (1.1\prime )$

$\displaystyle \frac{{d{U_N}}}{{dt}} = {A_N}{U_N} + {P_N}f,$

$ (1.2\prime )$

$\displaystyle {U_N}(0) = U_N^0 \in {X_N},$

where $ {X_N}$ is a finite dimensional subspace and $ {P_N}$ is a projector onto $ {X_N}$.

The study of such numerical methods may be related to the approximation of semigroups and Laplace transform methods making use of the resolvent operators $ {(A - \lambda I)^{ - 1}},{({A_N} - \lambda {I_N})^{ - 1}}$. The basic results require stability or weak stability and give convergence rates of the same order as in the steady state problems.


References [Enhancements On Off] (What's this?)

  • [1] D. G. ARONSON, "On the correctness of partial differential operators and the von Neumann condition," Proc. Amer. Math. Soc., v. 14, 1963, pp. 948-955. MR 0156484 (27:6407)
  • [2] G. A. BAKER, J. H. BRAMBLE & V. THOMÉE, "Single step Galerkin approximations for parabolic problems," Math. Comp., v. 31, 1977, pp. 818-847. MR 0448947 (56:7252)
  • [3] R. BEALS, "Laplace transform methods for evolution equations" in Boundary Value Problems for Linear Evolution Equations (Garnir, Ed.), D. Reidel Publishing Co., Dordrecht-Holland, 1977, pp. 1-26. MR 0492648 (58:11735)
  • [4] R. BELLMAN, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953. MR 0061235 (15:794b)
  • [5] C. DE BOOR & B. K. SWARTZ, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582-606. MR 0373328 (51:9528)
  • [6] J. H. BRAMBLE & V. THOMÉE, "Discrete time Galerkin methods for a parabolic boundary value problem," Ann. Mat. Pura Appl., v. 101, 1974, pp. 115-152. MR 0388805 (52:9639)
  • [7] J. H. BRAMBLE, A. H. SCHATZ, V. THOMÉE & L. B. WAHLBIN, "Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations," SIAM J. Numer. Anal., v. 14, 1977, pp. 218-241. MR 0448926 (56:7231)
  • [8] J. H. CERUTTI & S. V. PARTER, "Collocation methods for parabolic partial differential equations in one space dimension," Numer. Math., v. 26, 1976, pp. 227-254. MR 0433922 (55:6892)
  • [9] R. COURANT, K. FRIEDRICHS & H. LEWY, "Über die partiellen Differenzengleichungen der mathematischen Physik," Math. Ann., v. 100, 1928, pp. 32-74. MR 1512478
  • [10] MICHEL CROUZEIX, Sur l'Approximation des/Equations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, ThèseAL', Université Paris VI, 1975.
  • [11] J. DOUGLAS, JR., "On the relation between stability and convergence in the numerical solution of linear parabolic and hyperbolic differential equations," J. Soc. Indust. Appl. Math., v. 4, 1956, pp. 20-37. MR 0080368 (18:236d)
  • [12] J. DOUGLAS, JR., "On the numerical integration of $ {u_{xx}} + {u_{yy}} = {u_t}$ by implicit methods," J. Soc. Indust. Appl. Math., v. 3, 1955, pp. 42-65. MR 0071875 (17:196e)
  • [13] J. DOUGLAS, JR. & T. DUPONT, "Galerkin methods for parabolic equations," SIAM J. Numer. Anal., v. 7, 1970, pp. 575-626. MR 0277126 (43:2863)
  • [14] J. DOUGLAS, JR., T. DUPONT & M. F. WHEELER, "A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations," Math. Comp., v. 32, 1978, pp. 345-362. MR 0495012 (58:13780)
  • [15] J. DOUGLAS, JR. & T. DUPONT, Collocation Methods for Parabolic Equations in a Single Space Variable Based on $ {C^1}$-Piecewise Polynomial Spaces, Lecture Notes in Math., Vol. 385, Springer, New York, 1974. MR 0483559 (58:3551)
  • [16] H. FUJITA & A. MIZUTANI, "On the finite element method for parabolic equations. I: Approximation of holomorphic semigroups," J. Math. Soc. Japan, v. 28, 1976, pp. 749-771. MR 0428733 (55:1753)
  • [17] G. FIX, "Effect of quadrature errors in finite element approximations of steady state, eigenvalues, and parabolic problems," Proc. of the O. N. R. Regional Symposium 1972 on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972. MR 0413546 (54:1660)
  • [18] G. FIX & N. NASSIF, "On finite element approximations to time dependent problems," Numer. Math., v. 19, 1972, pp. 127-135. MR 0311122 (46:10218)
  • [19] G. E. FORSYTHE & W. R. WASOW, Finite-Difference Methods for Partial Differential Equations, Wiley, New York, 1960. MR 0130124 (23:B3156)
  • [20] MAX D. GUNZBURGER, "On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems," Math. Comp., v. 31, 1977, pp. 661-675. MR 0436624 (55:9567)
  • [21] H. P. HELFRICH, "Fehlerabschätzungen für das Galerkinverfahren zur Losung von Evolutionsgleichungen," Manuscripta Math., v. 13, 1974, pp. 219-235. MR 0356513 (50:8983)
  • [22] E. HILLE & R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
  • [23] F. JOHN, "On integration of parabolic equations by difference methods," Comm. Pure Appl. Math., v. 5, 1952, pp. 155-211. MR 0047885 (13:947b)
  • [24] M. L. JUNCOSA & D. M. YOUNG, "On the order of convergence of solutions of a difference equation to a solution of the diffusion equation," J. Soc. Indust. Appl. Math., v. 1, 1953, pp. 111-135. MR 0060907 (15:746d)
  • [25] M. L. JUNCOSA & DAVID YOUNG, "On the convergence of a solution of a difference equation to a solution of the equation of diffusion," Proc. Amer. Math. Soc., v. 5, 1954, pp. 168-174. MR 0060906 (15:746c)
  • [26] M. L. JUNCOSA & DAVID YOUNG, "On the Crank-Nieolson procedure for solving parabolie partial differential equations," Proc. Cambridge Philos. Soc., v. 53, 1955, pp. 448-461. MR 0088804 (19:583c)
  • [27] H. O. KREISS, "Über die Losung des Cauchyproblems für lineare partielle Differentialgleichungen mit Hilfe von Differenzengleichungen," Acta Math., v. 101, 1959, pp. 179-199. MR 0130474 (24:A335)
  • [28] H. O. KREISS, "Über die Differenzapproximation höher Genauigkeit bei Anfangswert-problem für partielle Differentialgleichungen," Numer. Math., v. 1, 1959, pp. 186-202. MR 0110206 (22:1088)
  • [29] H. O. KREISS, "Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren," BIT, v. 2, 1962, pp. 153-181. MR 0165712 (29:2992)
  • [30] P. D. LAX & R. D. RICHTMYER, "Survey of the stability of linear finite difference equations," Comm. Pure Appl. Math., v. 9, 1956, pp. 267-293. MR 0079204 (18:48c)
  • [31] W. LEUTERT, "On the convergence of unstable approximate solutions of the heat equation to the exact solution," J. Mathematical Phys., v. 30, 1952, pp. 245-251. MR 0046753 (13:783b)
  • [32] W. LEUTERT, "On the convergence of approximate solutions of the heat equation to the exact solution," Proc. Amer. Math. Soc., v. 2, 1951, pp. 433-439. MR 0043577 (13:287e)
  • [33] N. K. MADSEN & R. F. SINCOVEC, "The numerical method of lines for the solution of nonlinear partial differential equations," Computational Methods in Nonlinear Mechanics (J. T. Oden et al., Eds.), Texas Institute for Computational Mechanics, Austin, Texas, 1974. MR 0400731 (53:4561)
  • [34] G. G. O'BRIEN, M. A. HYMAN & S. KAPLAN, "A study of the numerical solution of partial differential equations," J. Math. and Phys., v. 29, 1951, pp. 223-251. MR 0040805 (12:751e)
  • [35] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Lecture Note #10, Univ. of Maryland, College Park, Maryland, 1974.
  • [36] H. S. PRICE & R. S. VARGA, "Error bounds for semidiscrete Galerkin approximations of parabolic problems with application to petroleum reservoir mechanics," Numerical Solution of Field Problems in Continuum Physics, SIAM-AMS Proceedings, Vol. II, Amer. Math. Soc., Providence, R. I., 1970, pp. 74-94. MR 0266452 (42:1358)
  • [37] P. A. RAVIART, "The use of numerical integration in finite element methods for solving parabolic equations," Conference on Numerical Analysis, Royal Irish Academy, Dublin, August 1972, Academic Press, New York, 1973. MR 0345428 (49:10164)
  • [38] R. D. RICHTMYER & K. W. MORTON, Difference Methods for Initial Value Problems, 2nd ed., Interscience, New York, 1967. MR 0220455 (36:3515)
  • [39] V. S. RYABENKII & A. F. FILIPPOW, Über die Stabilität von Differenzengleichungen, VEB Deutscher Verlag der Wissenschaften, Band 3, Berlin, 1960.
  • [40] W. G. STRANG, "Difference methods for mixed boundary-value problems," Duke Math. J., v. 27, 1960, pp. 221-232. MR 0114989 (22:5797)
  • [41] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)
  • [42] B. SWARTZ & B. WENDROFF, "Generalized finite-difference schemes," Math. Comp., v. 23, 1969, pp. 37-50. MR 0239768 (39:1125)
  • [43] H. F. TROTTER, "Approximation of semi-groups of operators," Pacific J. Math., v. 8, 1958, pp. 887-919. MR 0103420 (21:2190)
  • [44] B. WENDROFF, "Well-posed problems and stable difference operators," SIAM J. Numer. Anal., v. 5, 1968, pp. 71-82. MR 0223110 (36:6159)
  • [45] M. F. WHEELER, "A priori $ {L_2}$ error estimates for Galerkin approximations to parabolic partial differential equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 723-759. MR 0351124 (50:3613)
  • [46] M. F. WHEELER, "A $ {C^0}$ collocation-finite element method for two-point boundary problems and one space dimensional parabolic problems," SIAM J. Numer. Anal., v. 14, 1977, pp. 71-90. MR 0455429 (56:13667)
  • [47] M. F. WHEELER, "An optimal $ {L_\infty }$ error estimate for Galerkin approximations to solutions of two-point boundary value problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 914-917. MR 0343659 (49:8399)
  • [48] M. F. WHEELER, " $ {L_\infty }$ estimates of optimal orders for Galerkin methods for onedimensional second order parabolic and hyperbolic equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 908-913. MR 0343658 (49:8398)
  • [49] V. THOMÉE, "Some convergence results for Galerkin methods for parabolic boundary value problems," Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), Academic Press, New York, 1974, pp. 55-58. MR 0657811 (58:31890)
  • [50] D. V. WIDDER, The Laplace Transform, Princeton Univ. Press, Princeton, N. J., 1946.
  • [51] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin, 1965.
  • [52] M. ZLÁMAL, Finite Element Multistep Methods for Parabolic Equations, ISNM 28, Birkhäuser Verlag, Basel and Stuttgart, 1975, pp. 177-187. MR 0448943 (56:7248)
  • [53] M. ZLÁMAL, "Finite element multistep discretizations of parabolic boundary value problems," Math. Comp., v. 29, 1975, pp. 350-359. MR 0371105 (51:7326)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N35, 34G99

Retrieve articles in all journals with MSC: 65N35, 34G99


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0551294-9
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society