The shooting method applied to a cyclic inequality
Author:
B. A. Troesch
Journal:
Math. Comp. 34 (1980), 175184
MSC:
Primary 10E20
MathSciNet review:
551296
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is known that the cyclic sum where , , , , can be made smaller than for . The value of is investigated by the shooting method for twopoint boundary value problems, and the analytical result is proved. The inherent difficulty in a straightforward minimization of is mentioned.
 [1]
D.
E. Daykin, Inequalities for functions of a cyclic nature, J.
London Math. Soc. (2) 3 (1971), 453–462. MR 0284394
(44 #1622a)
 [2]
P.
H. Diananda, On a cyclic sum, Proc. Glasgow Math. Assoc.
6 (1963), 11–13 (1963). MR 0150084
(27 #87)
 [3]
P.
H. Diananda, A cyclic inequality and an extension of it. II,
Proc. Edinburgh Math. Soc. (2) 13 (1962/1963),
143–152. MR 0148831
(26 #6335)
 [4]
D.
Ž. Djoković, Sur une inégalité,
Proc. Glasgow Math. Assoc. 6 (1963), 1–10 (1963)
(French). MR
0150083 (27 #86)
 [5]
D.
S. Mitrinović, Analytic inequalities, SpringerVerlag,
New YorkBerlin, 1970. In cooperation with P. M. Vasić. \tseries Die
Grundlehren der mathematischen Wissenschaften, Band 165. MR 0274686
(43 #448)
 [6]
Pedro
Nowosad, Isoperimetric eigenvalue problems in algebras, Comm.
Pure Appl. Math. 21 (1968), 401–465. MR 0238087
(38 #6363)
 [7]
R. A. RANKIN, "An inequality," Math. Gaz., v. 42, 1958, pp. 3940.
 [8]
J.
L. Searcy and B.
A. Troesch, A cyclic inequality and a related eigenvalue
problem, Pacific J. Math. 81 (1979), no. 1,
217–226. MR
543745 (80f:15019)
 [9]
H.
S. Shapiro, Richard
Bellman, D.
J. Newman, W.
E. Weissblum, H.
R. Smith, and H.
S. M. Coxeter, Advanced Problems and Solutions: Problems for
Solution: 46034607, Amer. Math. Monthly 61 (1954),
no. 8, 571–572. MR
1528827, http://dx.doi.org/10.2307/2307617
 [1]
 D. E. DAYKIN, "Inequalities for functions of cyclic nature," J. London Math. Soc. (2), v. 3, 1971, pp. 453462. MR 0284394 (44:1622a)
 [2]
 P. H. DIANANDA, "On a cyclic sum," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 1113. MR 0150084 (27:87)
 [3]
 P. H. DIANANDA, "A cyclic inequality and an extension of it. II," Proc. Edinburgh Math. Soc. (2), v. 13, 1962/1963, pp. 143152. MR 0148831 (26:6335)
 [4]
 D. Ž. DJOKOVIĆ, "Sur une inégalité," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 110. MR 0150083 (27:86)
 [5]
 D. S. MITRINOVIĆ, Analytic Inequalities, SpringerVerlag, New York, 1970, p. 132 ff. MR 0274686 (43:448)
 [6]
 P. NOWOSAD, "Isoperimetric eigenvalue problems in algebra," Comm. Pure Appl. Math., v. 21, 1968, pp. 401465. MR 0238087 (38:6363)
 [7]
 R. A. RANKIN, "An inequality," Math. Gaz., v. 42, 1958, pp. 3940.
 [8]
 J. L. SEARCY & B. A. TROESCH, "A cyclic inequality and a related eigenvalue problem," Pacific J. Math., v. 81, 1979, pp. 217226. MR 543745 (80f:15019)
 [9]
 H. S. SHARIRO, "Problem 4603," Amer. Math. Monthly, v. 61, 1954, p. 571. MR 1528827
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10E20
Retrieve articles in all journals
with MSC:
10E20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198005512962
PII:
S 00255718(1980)05512962
Keywords:
Cyclic inequality,
shooting method,
minimization
Article copyright:
© Copyright 1980
American Mathematical Society
