Majorizing sequences and error bounds for iterative methods

Author:
George J. Miel

Journal:
Math. Comp. **34** (1980), 185-202

MSC:
Primary 65J05; Secondary 47H10

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551297-4

MathSciNet review:
551297

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a sequence in a Banach space, it is well known that if there is a sequence such that and , then converges to some and the error bounds hold. It is shown that certain stronger hypotheses imply sharper error bounds,

**[1]**J. E. DENNIS, "Toward a unified convergence theory for Newton-like methods,"*Nonlinear Functional Analysis and Applications*(L. B. Rail, Ed.), Academic Press, New York, 1971. MR**0278556 (43:4286)****[2]**J. E. DENNIS, "A brief introduction to quasi-Newton methods,"*Numerical Analysis*(G. H. Golub and J. Oliger, Eds.), Proc. Sympos. Appl. Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1978. MR**533049 (80d:65003)****[3]**J. E. DENNIS & J. J. MORÉ, "A characterization of superlinear convergence and its application to quasi-Newton methods,"*Math. Comp.*, v. 28, 1974, pp. 549-560. MR**0343581 (49:8322)****[4]**J. E. DENNIS & J. J. MORÉ, "Quasi-Newton methods, motivation and theory,"*SIAM Rev.*, v. 19, 1977, pp. 46-89. MR**0445812 (56:4146)****[5]**W. B. GRAGG & R. A. TAPIA, "Optimal error bounds for the Newton-Kantorovich theorem,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 10-13. MR**0343594 (49:8334)****[6]**H. HANCOCK,*Elliptic Integrals*, Dover, New York, 1958. MR**0099454 (20:5893)****[7]**L. V. KANTOROVICH, "Functional analysis and applied mathematics,"*Uspehi Mat. Nauk*, v. 3, 1948, pp. 89-185 (Russian); English transl., Rep. 1509, National Bureau of Standards, Washington, D. C., 1952. MR**0027947 (10:380a)****[8]**K. KNOPP,*Theory and Application of Infinite Series*, Blackie & Son Ltd., London and Glasgow, 1928.**[9]**N. S. KURPEL',*Projection-Iterative Methods for Solution of Operator Equations*, Transl. Math. Monographs, vol. 46, Amer. Math. Soc., Providence, R. I., 1976. MR**0405140 (53:8935)****[10]**P. LANCASTER, "Error analysis for the Newton-Raphson method,"*Numer. Math.*, v. 9, 1966, pp. 55-68. MR**0210315 (35:1208)****[11]**G. J. MIEL, "On a posteriori error estimates,"*Math. Comp.*, v. 31, 1977, pp. 204-213. MR**0426418 (54:14361)****[12]**G. J. MIEL, "Cones and error bounds for linear iterations,"*Aequationes Math.*(To appear.) MR**577486 (81i:47040)****[13]**G. J. MIEL, "The Kantorovich theorem with optimal error bounds,"*Amer. Math. Monthly*, v. 86, 1979, pp. 212-215. MR**522348 (80c:65109)****[14]**G. J. MIEL,*Exit Criteria for Newton-Type Iterations*, Research Paper No. 363, Dept. of Math. and Stat., Univ. of Calgary, 1977.**[15]**G. J. MIEL, "Unified error analysis for Newton-type methods,"*Numer. Math.*(To appear.) MR**553349 (81m:65095)****[16]**J. M. ORTEGA, "The Newton-Kantorovich theorem,"*Amer. Math. Monthly*, v. 75, 1968, pp. 658-660. MR**0231218 (37:6773)****[17]**J. M. ORTEGA & W. C. RHEINBOLDT,*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970. MR**0273810 (42:8686)****[18]**A. M. OSTROWSKI, "La méthode de Newton dans les espaces de Banach,"*C. R. Acad. Sci. Paris Sér. A.*, v. 272, 1971, pp. 1251-1253. MR**0285110 (44:2334)****[19]**L. B. RALL, "Quadratic equations in Banach spaces,"*Rend. Circ. Mat. Palermo*, v. 10, 1961, pp. 314-332. MR**0144184 (26:1731)****[20]**L. B. RALL,*Computational Solution of Nonlinear Operator Equations*, Wiley, New York, 1969. MR**0240944 (39:2289)****[21]**L. B. RALL, "A note on the convergence of Newton's method,"*SIAM J. Numer. Anal.*, v. 11, 1974, pp. 34-36. MR**0343599 (49:8339)****[22]**W. C. RHEINBOLDT, "A unified convergence theory for a class of iterative processes,"*SIAM J. Numer. Anal.*, v. 5, 1968, pp. 42-63. MR**0225468 (37:1061)****[23]**J. ROCKNE, "Newton's method under mild differentiability conditions with error analysis,"*Numer. Math.*, v. 18, 1972, pp. 401-412.**[24]**A. H. SHERMAN, "On Newton-iterative methods for the solution of systems of nonlinear equations,"*SIAM J. Numer. Anal.*, v. 15, 1978, pp. 755-771. MR**0483382 (58:3388)****[25]**A. I. ZINČENKO, "A class of approximate methods for solving operator equations with nondifferentiable operators,"*Dopovīdī Akad. Nauk Ukrdïn. RSR*,**1963**, pp. 852-855. (Ukrainian)

Retrieve articles in *Mathematics of Computation*
with MSC:
65J05,
47H10

Retrieve articles in all journals with MSC: 65J05, 47H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551297-4

Keywords:
Majorizing sequences,
iterative methods,
exit criteria

Article copyright:
© Copyright 1980
American Mathematical Society