On least squares exponential sum approximation with positive coefficients

Authors:
John W. Evans, William B. Gragg and Randall J. LeVeque

Journal:
Math. Comp. **34** (1980), 203-211

MSC:
Primary 65D15; Secondary 41A35

MathSciNet review:
551298

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is given for finding optimal least squares exponential sum approximations to sampled data subject to the constraint that the coefficients appearing in the exponential sum are positive. The algorithm employs the divided differences of exponentials to overcome certain problems of ill-conditioning and is suitable for data sampled at noninteger times.

**[1]**D. BRAESS, "Approximation mit Exponentialsummen,"*Computing*, v. 2, 1967, pp. 309-321. MR**0233120 (38:1443)****[2]**D. BRAESS, "Chebyshev approximation by exponentials on finite sets,"*Math. Comp.*, v. 27, 1973, pp. 327-331. MR**0330854 (48:9191)****[3]**D. G. CANTOR & J. W. EVANS, "On approximation by positive sums of powers,"*SIAM J. Appl. Math.*, v. 18, 1970, pp. 380-388. MR**0277090 (43:2827)****[4]**S. D. CONTE &. C. DE BOOR,*Elementary Numerical Analysis*:*An Algorithmic Approach*, McGraw-Hill, New York, 1972. MR**0202267 (34:2140)****[5]**C. B. DUNHAM, "Nonlinear mean-square approximation on finite sets,"*SIAM J. Numer. Anal.*, v. 12, 1975, pp. 105-110. MR**0361565 (50:14010)****[6]**C. LAWSON & R. HANSON,*Solving Least Squares Problems*, Prentice-Hall, Englewood Cliffs, N. J., 1974. MR**0366019 (51:2270)****[7]**C. B. MOLER & C. F. VAN LOAN, "Nineteen dubious ways to compute the exponential of a matrix,"*SIAM Rev.*, v. 20, 1978, pp. 801-836. MR**508383 (80c:15004)****[8]**G. OPITZ, "Steigungsmatrizen,"*Z. Angew. Math. Mech.*, v. 44, 1964, pp. T52-T54. MR**0185806 (32:3266)****[9]**R. C. WARD, "Numerical computation of the matrix exponential with accuracy estimate,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 600-610. MR**0445806 (56:4140)****[10]**W. J. WISCOMBE & J. W. EVANS, "Exponential sum fitting of radioactive transmission functions,"*J. Computational Phys.*, v. 24, 1977, pp. 416-444. MR**0494842 (58:13626)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D15,
41A35

Retrieve articles in all journals with MSC: 65D15, 41A35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551298-6

Keywords:
Least squares approximation,
positive exponential sums,
divided differences,
convex programming

Article copyright:
© Copyright 1980
American Mathematical Society