Solution of Linear Equations With Rational Toeplitz Matrices*

By Bradley W. Dickinson

Abstract. We associate a sequence of Toeplitz matrices with the rational formal power series \(T(z) \). An algorithm for solving linear equations with a Toeplitz matrix from this sequence is given. The algorithm requires \(O(n) \) operations to solve a set of \(n \) equations, for \(n \) sufficiently large.

1. Introduction. In this paper, we present an algorithm for solving a system of \(N + 1 \) linear equations with special Toeplitz structure:

\[
T_N x = y.
\]

For every \(n > 0 \), let \(T_n = \{ t_{i,j}, 0 \leq i, j \leq n \} \) be a Toeplitz matrix. We assume that \(T_n^{-1} \) exists for \(0 \leq n \leq N \) and that the formal Laurent series

\[
T(z) = \sum_{k=-\infty}^{\infty} t_k z^k
\]

is a rational function of \(z \). Then, for sufficiently large \(N \), our algorithm requires \(O(N) \) operations to compute the solution to (1). The algorithms of Levinson [5], Bareiss [1], and Zohar [13], which exploit only the Toeplitz structure of \(T_N \), require \(O(N^2) \) operations to solve (1).

This problem is motivated by an important special case of (1) arising in linear least squares estimation theory. When \(T(z) \) is rational and matrices \(T_n \) are symmetric and positive definite for all \(n \), \(T_N \) is the covariance matrix of \(N + 1 \) samples from a wide-sense stationary autoregressive moving-average stochastic process. Trench [10], in a somewhat overlooked paper, outlined an algorithm for solving the linear equations associated with certain estimation problems; his algorithm requires \(O(N) \) operations but, as noted in [10], the details are "tedious to write out" except in the banded case when \(T(z) \) in (2) is a finite series. For the banded case, alternative algorithms can be developed using the result that the (banded) Cholesky factors of \(T_N \) can be obtained in \(O(N) \) operations; see Morf [6] and Rissanen [7].

Coupling Trench's work on inversion of nonsymmetric banded Toeplitz matrices [11] with Zohar's results [13] leads to an efficient algorithm for solution of general banded Toeplitz systems in \(O((p + q)N) \) operations, where \(t_i = 0 \) for \(i > p \) and \(i < -q \)
In this paper we will generalize the solution algorithms of [3] and [13] to a class of "almost-Toeplitz" systems, leading to an algorithm for solving the special Toeplitz systems defined above.

2. Solution of the Toeplitz System. We first present a decomposition of T_n which follows from the rationality of $T(z)$. By separately considering the upper and lower triangular parts of T_n we obtain a representation in terms of banded, triangular Toeplitz matrices. Let

\begin{equation}
T(z) = T_+(z) + T_-(z),
\end{equation}

where by rationality

\begin{align}
T_+(z) &= \frac{t_0}{2} + \sum_{k=1}^{\infty} t_k z^k = c(z) / d(z), \\
T_-(z) &= \frac{t_0}{2} + \sum_{k=1}^{\infty} t_{-k} z^{-k} = \gamma(z) / \delta(z),
\end{align}

and $c(z)$, $d(z)$, $\gamma(z)$ and $\delta(z)$ are polynomials given by

\begin{align}
c(z) &= \sum_{i=0}^{p} c_i z^i, \quad c_p \neq 0, \\
d(z) &= 1 + \sum_{i=1}^{q} d_i z^i, \quad d_q \neq 0, \\
\gamma(z) &= \sum_{i=0}^{r} \gamma_i z^{-i}, \quad \gamma_r \neq 0, \\
\delta(z) &= 1 + \sum_{i=1}^{s} \delta_i z^{-i}, \quad \delta_s \neq 0.
\end{align}

For notational convenience, we write $L_n(w)$ for the lower triangular Toeplitz matrix whose first column is the $(n + 1)$-vector w; $U_n(w)$ is the upper triangular Toeplitz matrix whose first row is w', where prime denotes transpose. We define $(n + 1)$-vectors of the coefficients of the polynomials in (5) by

\begin{align}
c_n &= (c_0 c_1 \cdots c_p 0 \cdots 0)', \\
d_n &= (1 d_1 \cdots d_q 0 \cdots 0)', \\
\gamma_n &= (\gamma_0 \gamma_1 \cdots \gamma_r 0 \cdots 0)', \\
\delta_n &= (1 \delta_1 \cdots \delta_s 0 \cdots 0)'.
\end{align}

These vectors are suitably truncated when n is less than p, q, r, or s.

The desired representation of T_n follows from the natural isomorphism between the ring of formal power series in z and the ring of semi-infinite (towards the southeast) lower triangular Toeplitz matrices; the coefficient of z^0 is associated with the
diagonal element, the coefficient of z with the first subdiagonal element, etc. Polynomials in z correspond to banded matrices, and power series multiplication corresponds to matrix multiplication. Similarly, power series in z^{-1} are naturally isomorphic to semi-infinite (towards the northwest) upper triangular Toeplitz matrices with polynomials in z^{-1} corresponding to banded matrices. In both cases, a power series with a nonzero coefficient of z^0 is invertible in the ring; this corresponds to the fact that an invertible triangular Toeplitz matrix has a triangular Toeplitz inverse. (In the finite case, Traub [8] has given an expression for the (Toeplitz) inverse of a triangular Toeplitz matrix.)

Applying the isomorphisms to the power series equations (4a) and (4b) and taking the first $n + 1$ rows and columns of the corresponding matrix products, starting at the northwest and southeast corners, respectively, and combining the lower and upper triangular Toeplitz matrices gives the desired representation of T_n.

Lemma 1. With the notation defined above, for $n > 0$

\[
T_n = L_n^{-1}(d_n)L_n(c_n) + U_n(\gamma_n)U_n^{-1}(\delta_n).
\]

Since power series multiplication is commutative, we have chosen a convenient ordering of the factors. Now, treating (7) simply as a matrix identity for the class of Toeplitz matrices considered here, we see that T_n can be reduced to a band matrix by cross multiplication, giving

\[
R_n = L_n(d_n)T_nU_n(\delta_n) = L_n(c_n)U_n(\delta_n) + L_n(d_n)U_n(\gamma_n).
\]

Since T_n is Toeplitz, $L_n(d_n)$ is lower triangular, and $U_n(\delta_n)$ is upper triangular, the first equality in (8) shows that for $n > 1$, R_{n-1} is the n by n principal submatrix of R_n. However, using the second equation in (8) and the Toeplitz structure of the triangular matrices, we obtain the following important structural property of R_n.

Lemma 2. For $n > 1$, the matrix R_n defined in (8) satisfies

\[
R_n = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & R_{n-1}
\end{bmatrix} = c_n\delta_n' + d_n\gamma_n'.
\]

From (6a)-(6d), the nonzero elements of the matrix on the right-hand side of (9) lie in the northwest corner but generally extend beyond the first row and column, so R_n differs from Toeplitz only in its northwest corner. When the degrees $p = r = 0$ so that $c_n' = \gamma_n' = (1 \ 0 \ \cdots \ 0)$, R_n is Toeplitz.

A general theory for the inversion of matrices which can be expressed as sums of products of lower and upper triangular Toeplitz matrices is given by Friedlander et al. [4]. Efficient, recursive algorithms for determining the inverses of such matrices are derived, generalizing the Trench algorithm [9], [12]. The particularly simple form of (9) leads to additional simplifications of the approach in [4]. Furthermore, as in [11], the band structure of R_n may be exploited to reduce the computational complexity by an additional order of magnitude.
We propose a three step approach to solving the original system of equations (1):

(a) Compute \(L_N(d_N)y = \tilde{y} \).

(b) Solve \(R_N \tilde{x} = \tilde{y} \).

(c) Compute \(x = U_N(\delta_N)\tilde{x} \).

Thus in the following, we only describe an algorithm for the second step. Some additional notation will be required. We define for each \(n \geq 0 \) the vector

\[
A_n = (a_{n0} \cdots a_{nn})', \quad a_{nn} = 1
\]

as the solution to the system

\[
D \cdot R_n A_n = (0 \cdots 0 \alpha_n)',
\]

where the scalars \(\{\alpha_n; n \geq 0\} \) are defined recursively below. Similarly, vectors \(P_n \) and \(Q_n \) are defined by

\[
R_n P_n = c_n, \\
R_n Q_n = d_n.
\]

Next we let

\[
\tilde{y}_n = (\tilde{y}_0, \ldots, \tilde{y}_n)'
\]

and define \(X_n \) by

\[
R_n X_n = \tilde{y}_n.
\]

The matrix \(R_n \) has elements \(\{r_{ij}; 0 \leq i, j \leq n\} \). Now we are ready to derive our major result. We proceed in the usual way, obtaining the quantities \(A_{n+1}, P_{n+1}, Q_{n+1}, \) and \(X_{n+1} \) from \(A_n, P_n, Q_n, \) and \(X_n \). Using the structure of \(R_{n+1}, (9) \), we find

\[
R_{n+1} [0 A_n']' = (0 \cdots 0 \alpha_n)' + c_{n+1} e_n + d_{n+1} f_n,
\]

where the first term is an \((n + 1)-\)vector and the scalars \(e_n \) and \(f_n \) are given by

\[
e_n = [0 A_n'] \delta_{n+1},
\]

\[
f_n = [0 A_n'] \gamma_{n+1}.
\]

Since \(R_n \) is a principal submatrix of \(R_{n+1} \), we obtain

\[
R_{n+1} [P_n' 0]' = [c_n' g_n]', \\
R_{n+1} [Q_n' 0]' = [d_n' h_n]', \\
R_{n+1} [X_n' 0]' = [\tilde{y}_n' \Delta_n]'.
\]

where the scalars \(g_n, h_n, \) and \(\Delta_n \) are given by

\[
g_n = [r_{n+1,0} \cdots r_{n+1,n}] P_n, \\
h_n = [r_{n+1,0} \cdots r_{n+1,n}] Q_n.
\]
We let c_{n+1} and d_{n+1} denote the last elements of the vectors c_n and d_n, respectively. Then P_n and Q_n can be used to update A_n:

$$
A_{n+1} = [0 A'_n]' - [P'_n 0]'e_n - [Q'_n 0]'f_n,
$$

$$
\alpha_{n+1} = \alpha_n + (c_{n+1} - g')e_n + (d_{n+1} - h)f_n.
$$

Now that A_{n+1} is available, it may be used to update the values of X_n, P_n, and Q_n so that (12), (13), and (15) are satisfied. The required steps are given by

$$
X_{n+1} = [X'_n 0]' - A_{n+1}(\Delta_n - \tilde{y}_{n+1})/\alpha_{n+1},
$$

$$
P_{n+1} = [P'_n 0]' - A_{n+1}(\xi_n - c_{n+1})/\alpha_{n+1},
$$

$$
Q_{n+1} = [Q'_n 0]' - A_{n+1}(h_n - d_{n+1})/\alpha_{n+1}.
$$

This completes the updating calculations.

The initial conditions for the algorithm are quite simple:

$$
A_0 = 1, \quad \alpha_0 = r_{00}, \quad Q_0 = 1/r_{00}, \quad X_0 = y_0/r_{00}, \quad P_0 = c_0/r_{00},
$$

where c_0 is obtained from (5a). In verifying the correctness of this algorithm, only the division by α_{n+1} at each stage requires additional justification. Here the assumption that T_{n}^{-1} exists for every $0 \leq n \leq N$ is used. From the first equation of (8), R_{n}^{-1} exists for every $0 \leq n \leq N$ because U_n and L_n are upper triangular matrices. Since R_n is a principal submatrix of R_{n+1}, from Eqs. (10) and (11), $\alpha_{n+1} = \det R_{n+1}/\det R_n$; and this justifies the divisions required in the algorithm.

No use of the banded structure of R_n has yet been made; the algorithm of Theorem 1 applies to any matrix R_N having the structure in (9) and with R_{n}^{-1} defined for each n. This includes some Toeplitz matrices, for example. With $\gamma_n = c_n = (1 0 \cdots 0)'$, $f_n = 0$ in (17b) for all n and Q_n in (13) is not required so the algorithm reduces to the Levinson-Trench-Zohar algorithm [13]. To exploit the banded nature of R_N, we make a minor assumption that $\rho = \max(p, q)$ is the lower bandwidth of R_N; that is we assume $r_{p+j,j} = 0$ and $r_{p+k,j} = 0$ for $k > j$. This is not a limitation because of (5), (6) and (8)

$$
r_{p+j,j} = \left\{ \begin{array}{ll}
\gamma_0 d_q = t_0 d_q/2 \neq 0 & \text{for } q > p, \\
c_p \neq 0 & \text{for } p > q, \\
c_p + \gamma_0 d_q & \text{for } p = q,
\end{array} \right.
$$

so this condition can be assured by modifying the fraction of the constant term to that which is assigned to $T(z)$ in (4b) if necessary. Some observations now follow directly:

(a) Computing (17a) and (17b) requires only the first s and r components of A_n, respectively. Let $\sigma = \max(s, r)$; σ will ordinarily be the upper bandwidth of R_N.

(b) Only the last ρ elements of P_n, Q_n, and X_n are needed to compute (19a)–(19c).

(c) Consequently, in (20), (22b), (22c) only the first σ and last ρ elements of
A_{n+1}, Q_{n+1}, and P_{n+1} need to be computed for n larger than $\rho + \sigma$. In (22a) only the last ρ elements of X_{n+1} need to be computed. When $n + 1$ reaches N, the remaining elements of X_N are computed by back substitution.

We define

$$X_N = (X_{N0} \cdots X_{NN})'.$$

Then for $N - \rho > j > 0$ we take

$$X_N^j = (1/r_{j+\rho,i}) \left(\tilde{V}_{j+\rho} - \sum_{i=j+1}^{j+\rho+\sigma} r_{j+\rho,i} X_{Ni} \right),$$

where $X_{Ni} = 0$ for $i > N$.

Together with the algorithms of Theorem 1, these modifications provide an algorithm for solving $R_N \tilde{X} = \tilde{Y}$; as discussed earlier, this is the only nontrivial step in the solution of (1) when T_N is rational. An operation count (of multiplications) shows that solution of (1) requires $(10\rho + 5\sigma + 6)N + O((\rho + \sigma)^2)$ operations. Notice that because R_N is Toeplitz except in its upper $(\rho + 1)$ by $(\sigma + 1)$ corner, all of its elements can be computed in $O((\rho + \sigma)^2)$ operations. This is still true if $T(z)$ is given in factored form

$$T(z) = (b(z)/d(z))(\beta(z)/\delta(z))$$

as is often the case in applications such as the linear estimation problems considered by Trench [10].

3. Discussion. Our algorithm differs from Trench's [10] in the following way. By extracting triangular Toeplitz factors of known form from T_N, namely $L_N^{-1}(d_N)$ and $L_N^{-1}(\delta_N)$, we are left with a banded nearly-Toeplitz system to solve. It appears that Trench removes nearly-Toeplitz factors from T_N in order to be left with a banded Toeplitz system to solve. His motivation for so doing was the availability of an efficient algorithm for such systems. We have shown that a very similar algorithm can be used to solve the banded nearly-Toeplitz system.

If the rational power series $T(z)$ converges for some annulus centered on the origin in the complex plane, then subject to some minor assumptions, the existence of T_n^{-1} for $0 \leq n \leq N$ can be expressed as a constraint on the poles and zeros of $T(z)$. The additional assumptions are that with $T(z) = N(z)/D(z)$ for relatively prime polynomials $N(z)$ and $D(z)$, $N(0) \neq 0$ and $N(z)$ has distinct zeros. Under these circumstances, Day [2] gives an explicit formula for the determinant of T_n in terms of the zeros of $N(z)$ and $D(z)$, and a nonzero determinant is equivalent to the invertibility of T_n.

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, New Jersey 08540

