Solution of linear equations with rational Toeplitz matrices

Author:
Bradley W. Dickinson

Journal:
Math. Comp. **34** (1980), 227-233

MSC:
Primary 65F05

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551300-1

MathSciNet review:
551300

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We associate a sequence of Toeplitz matrices with the rational formal power series . An algorithm for solving linear equations with a Toeplitz matrix from this sequence is given. The algorithm requires operations to solve a set of *n* equations, for *n* sufficiently large.

**[1]**Erwin H. Bareiss,*Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices*, Numer. Math.**13**(1969), 404–424. MR**0255027**, https://doi.org/10.1007/BF02163269**[2]**K. Michael Day,*Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function*, Trans. Amer. Math. Soc.**206**(1975), 224–245. MR**0379803**, https://doi.org/10.1090/S0002-9947-1975-0379803-8**[3]**B. W. DICKINSON, "Efficient solution of banded Toeplitz systems,"*IEEE Trans. Acoust. Speech Signal Process.*, v. ASSP-27, 1979, pp. 421-423.**[4]**B. Friedlander, M. Morf, T. Kailath, and L. Ljung,*New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices*, Linear Algebra Appl.**27**(1979), 31–60. MR**545721**, https://doi.org/10.1016/0024-3795(79)90030-2**[5]**Norman Levinson,*The Wiener RMS (root mean square) error criterion in filter design and prediction*, J. Math. Phys. Mass. Inst. Tech.**25**(1947), 261–278. MR**0019257**, https://doi.org/10.1002/sapm1946251261**[6]**M. MORF,*Fast Algorithms for Multivariable Systems*, Ph. D. thesis, Stanford University, 1974.**[7]**J. Rissanen,*Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials*, Math. Comp.**27**(1973), 147–154. MR**0329235**, https://doi.org/10.1090/S0025-5718-1973-0329235-5**[8]**J. F. Traub,*Associated polynomials and uniform methods for the solution of linear problems*, SIAM Rev.**8**(1966), 277–301. MR**0207238**, https://doi.org/10.1137/1008061**[9]**William F. Trench,*An algorithm for the inversion of finite Toeplitz matrices*, J. Soc. Indust. Appl. Math.**12**(1964), 515–522. MR**0173681****[10]**William F. Trench,*Weighting coefficients for the prediction of stationary time series from the finite past*, SIAM J. Appl. Math.**15**(1967), 1502–1510. MR**0225458**, https://doi.org/10.1137/0115132**[11]**William F. Trench,*Inversion of Toeplitz band matrices*, Math. Comp.**28**(1974), 1089–1095. MR**0347066**, https://doi.org/10.1090/S0025-5718-1974-0347066-8**[12]**Shalhav Zohar,*Toeplitz matrix inversion: The algoritm of W. F. Trench*, J. Assoc. Comput. Mach.**16**(1969), 592–601. MR**0247762**, https://doi.org/10.1145/321541.321549**[13]**Shalhav Zohar,*The solution of a Toeplitz set of linear equations*, J. Assoc. Comput. Mach.**21**(1974), 272–276. MR**0343567**, https://doi.org/10.1145/321812.321822

Retrieve articles in *Mathematics of Computation*
with MSC:
65F05

Retrieve articles in all journals with MSC: 65F05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0551300-1

Keywords:
Toeplitz matrix,
linear equations

Article copyright:
© Copyright 1980
American Mathematical Society