Some new algorithms for highprecision computation of Euler's constant
Authors:
Richard P. Brent and Edwin M. McMillan
Journal:
Math. Comp. 34 (1980), 305312
MSC:
Primary 1004; Secondary 10A40, 68C05
MathSciNet review:
551307
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We describe several new algorithms for the highprecision computation of Euler's constant Using one of the algorithms, which is based on an identity involving Bessel functions, has been computed to 30,100 decimal places. By computing their regular continued fractions we show that, if or is of the form for integers P and Q, then .
 [1]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [2]
M. BEELER, R. W. GOSPER & R. SCHROEPPEL, "Hakmem," Memo No. 239, M.I.T. Artificial Intelligence Lab., Cambridge, Mass., 1972, pp. 7071.
 [3]
W.
A. Beyer and M.
S. Waterman, Error analysis of a computation of
Euler’s constant, Math. Comp. 28 (1974), 599–604. MR 0341809
(49 #6555), http://dx.doi.org/10.1090/S00255718197403418095
 [4]
W.
A. Beyer and M.
S. Waterman, Error analysis of a computation of
Euler’s constant, Math. Comp. 28 (1974), 599–604. MR 0341809
(49 #6555), http://dx.doi.org/10.1090/S00255718197403418095
 [5]
R. P. BRENT, "The complexity of multipleprecision arithmetic," Complexity of Computational Problem Solving (R. S. Anderssen and R. P. Brent, Eds.), Univ. of Queensland Press, Brisbane, 1976, pp. 126165.
 [6]
Richard
P. Brent, Multipleprecision zerofinding methods and the
complexity of elementary function evaluation, Analytic computational
complexity (Proc. Sympos., CarnegieMellon Univ., Pittsburgh, Pa., 1975),
Academic Press, New York, 1976, pp. 151–176. MR 0423869
(54 #11843)
 [7]
Richard
P. Brent, Computation of the regular continued
fraction for Euler’s constant, Math.
Comp. 31 (1977), no. 139, 771–777. MR 0436547
(55 #9490), http://dx.doi.org/10.1090/S00255718197704365477
 [8]
R. P. BRENT, " and to 20700D and their regular continued fractions to 20000 partial quotients," UMT 1, Math. Comp., v. 32, 1978, p. 311.
 [9]
R. P. BRENT, "A Fortran multipleprecision arithmetic package," ACM Trans. Math. Software, v. 4, 1978, pp. 5770.
 [10]
R. P. BRENT, "Euler's constant and its exponential to 30,100 decimals," Computing Research Group, Australian National University, Sept. 1978. Submitted to Math. Comp. UMT file.
 [11]
R. P. BRENT & E. M. McMILLAN, "The first 29,000 partial quotients in the regular continued fractions for Euler's constant and its exponential," submitted to Math. Comp. UMT file.
 [12]
J. W. L. GLAISHER, "History of Euler's constant," Messenger of Math., v. 1, 1872, pp. 2530.
 [13]
A.
Ya. Khintchine, Continued fractions, Translated by Peter Wynn,
P. Noordhoff Ltd., Groningen, 1963. MR 0161834
(28 #5038)
 [14]
G. F. B. RIEMANN, "Zur Theorie der Nobili'schen Farbenringe," Poggendorff's Annalen der Physik und Chemie, Bd. 95, 1855, pp. 130139. (Reprinted in Bernhard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Teubner, Leipzig, 1876, pp. 5461.)
 [15]
A.
Schönhage and V.
Strassen, Schnelle Multiplikation grosser Zahlen, Computing
(Arch. Elektron. Rechnen) 7 (1971), 281–292 (German,
with English summary). MR 0292344
(45 #1431)
 [16]
Dura
W. Sweeney, On the computation of Euler’s
constant, Math. Comp. 17 (1963), 170–178. MR 0160308
(28 #3522), http://dx.doi.org/10.1090/S0025571819630160308X
 [17]
A. VAN DER POORTEN, "A proof that Euler missedApéry's proof of the irrationality of ," Mathematical Intelligence, v. 1, 1979, pp. 196203.
 [18]
H.
S. Wall, Analytic Theory of Continued Fractions, D. Van
Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596
(10,32d)
 [19]
G.
N. Watson, A Treatise on the Theory of Bessel Functions,
Cambridge University Press, Cambridge, England, 1944. MR 0010746
(6,64a)
 [1]
 M. ABRAMOWITZ & I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D. C., 1964. MR 0167642 (29:4914)
 [2]
 M. BEELER, R. W. GOSPER & R. SCHROEPPEL, "Hakmem," Memo No. 239, M.I.T. Artificial Intelligence Lab., Cambridge, Mass., 1972, pp. 7071.
 [3]
 W. A. BEYER & M. S. WATERMAN, "Error analysis of a computation of Euler's constant," Math. Comp., v. 28, 1974, pp. 599604. MR 49 #6555. MR 0341809 (49:6555)
 [4]
 W. A. BEYER & M. S. WATERMAN, "Decimals and partial quotients of Euler's constant and In 2," UMT 19, Math. Comp., v. 28, 1974, p. 667. Errata: Math. Comp., MTE 549, v. 32, 1978, pp. 317318. MR 0341809 (49:6555)
 [5]
 R. P. BRENT, "The complexity of multipleprecision arithmetic," Complexity of Computational Problem Solving (R. S. Anderssen and R. P. Brent, Eds.), Univ. of Queensland Press, Brisbane, 1976, pp. 126165.
 [6]
 R. P. BRENT, "Multipleprecision zerofinding methods and the complexity of elementary function evaluation," Analytic Computational Complexity (J. F. Traub, Ed.), Academic Press, New York, 1976, pp. 151176. MR 52 #15938, 54 #11843. MR 0423869 (54:11843)
 [7]
 R. P. BRENT, "Computation of the regular continued fraction for Euler's constant," Math. Comp., v. 31, 1977, pp. 771777. MR 55 #9490. MR 0436547 (55:9490)
 [8]
 R. P. BRENT, " and to 20700D and their regular continued fractions to 20000 partial quotients," UMT 1, Math. Comp., v. 32, 1978, p. 311.
 [9]
 R. P. BRENT, "A Fortran multipleprecision arithmetic package," ACM Trans. Math. Software, v. 4, 1978, pp. 5770.
 [10]
 R. P. BRENT, "Euler's constant and its exponential to 30,100 decimals," Computing Research Group, Australian National University, Sept. 1978. Submitted to Math. Comp. UMT file.
 [11]
 R. P. BRENT & E. M. McMILLAN, "The first 29,000 partial quotients in the regular continued fractions for Euler's constant and its exponential," submitted to Math. Comp. UMT file.
 [12]
 J. W. L. GLAISHER, "History of Euler's constant," Messenger of Math., v. 1, 1872, pp. 2530.
 [13]
 A. YA. KHINTCHINE (A. JA. HINČIN), Continued Fractions, 3rd ed., (English transl. by P. Wynn), Noordhoff, Groningen, 1963. MR 28 #5038. MR 0161834 (28:5038)
 [14]
 G. F. B. RIEMANN, "Zur Theorie der Nobili'schen Farbenringe," Poggendorff's Annalen der Physik und Chemie, Bd. 95, 1855, pp. 130139. (Reprinted in Bernhard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Teubner, Leipzig, 1876, pp. 5461.)
 [15]
 A. SCHÖNHAGE & V. STRASSEN, "Schnelle Multiplikation grosser Zahlen," Computing, v. 7, 1971, pp. 281292. MR 0292344 (45:1431)
 [16]
 D. W. SWEENEY, "On the computation of Euler's constant," Math. Comp., v. 17, 1963, pp. 170178. MR 28 #3522. MR 0160308 (28:3522)
 [17]
 A. VAN DER POORTEN, "A proof that Euler missedApéry's proof of the irrationality of ," Mathematical Intelligence, v. 1, 1979, pp. 196203.
 [18]
 H. WALL, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948. MR 0025596 (10:32d)
 [19]
 G. N. WATSON, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, London, 1944. MR 0010746 (6:64a)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
1004,
10A40,
68C05
Retrieve articles in all journals
with MSC:
1004,
10A40,
68C05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198005513074
PII:
S 00255718(1980)05513074
Keywords:
Euler's constant,
Mascheroni's constant,
gamma,
Bessel functions,
rational approximation,
regular continued fractions,
multipleprecision arithmetic,
GaussKusmin law
Article copyright:
© Copyright 1980 American Mathematical Society
