Some new algorithms for high-precision computation of Euler's constant

Authors:
Richard P. Brent and Edwin M. McMillan

Journal:
Math. Comp. **34** (1980), 305-312

MSC:
Primary 10-04; Secondary 10A40, 68C05

MathSciNet review:
551307

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe several new algorithms for the high-precision computation of Euler's constant Using one of the algorithms, which is based on an identity involving Bessel functions, has been computed to 30,100 decimal places. By computing their regular continued fractions we show that, if or is of the form for integers *P* and *Q*, then .

**[1]**M. ABRAMOWITZ & I. A. STEGUN,*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards, Washington, D. C., 1964. MR**0167642 (29:4914)****[2]**M. BEELER, R. W. GOSPER & R. SCHROEPPEL, "Hakmem," Memo No. 239, M.I.T. Artificial Intelligence Lab., Cambridge, Mass., 1972, pp. 70-71.**[3]**W. A. BEYER & M. S. WATERMAN, "Error analysis of a computation of Euler's constant,"*Math. Comp.*, v. 28, 1974, pp. 599-604. MR**49**#6555. MR**0341809 (49:6555)****[4]**W. A. BEYER & M. S. WATERMAN, "Decimals and partial quotients of Euler's constant and In 2," UMT**19**,*Math. Comp.*, v. 28, 1974, p. 667. Errata:*Math. Comp.*, MTE**549**, v. 32, 1978, pp. 317-318. MR**0341809 (49:6555)****[5]**R. P. BRENT, "The complexity of multiple-precision arithmetic,"*Complexity of Computational Problem Solving*(R. S. Anderssen and R. P. Brent, Eds.), Univ. of Queensland Press, Brisbane, 1976, pp. 126-165.**[6]**R. P. BRENT, "Multiple-precision zero-finding methods and the complexity of elementary function evaluation,"*Analytic Computational Complexity*(J. F. Traub, Ed.), Academic Press, New York, 1976, pp. 151-176. MR**52**#15938,**54**#11843. MR**0423869 (54:11843)****[7]**R. P. BRENT, "Computation of the regular continued fraction for Euler's constant,"*Math. Comp.*, v. 31, 1977, pp. 771-777. MR**55**#9490. MR**0436547 (55:9490)****[8]**R. P. BRENT, " and to 20700D and their regular continued fractions to 20000 partial quotients," UMT 1,*Math. Comp.*, v. 32, 1978, p. 311.**[9]**R. P. BRENT, "A Fortran multiple-precision arithmetic package,"*ACM Trans. Math. Software*, v. 4, 1978, pp. 57-70.**[10]**R. P. BRENT, "Euler's constant and its exponential to 30,100 decimals," Computing Research Group, Australian National University, Sept. 1978. Submitted to*Math. Comp.*UMT file.**[11]**R. P. BRENT & E. M. McMILLAN, "The first 29,000 partial quotients in the regular continued fractions for Euler's constant and its exponential," submitted to*Math. Comp.*UMT file.**[12]**J. W. L. GLAISHER, "History of Euler's constant,"*Messenger of Math.*, v. 1, 1872, pp. 25-30.**[13]**A. YA. KHINTCHINE (A. JA. HINČIN),*Continued Fractions*, 3rd ed., (English transl. by P. Wynn), Noordhoff, Groningen, 1963. MR**28**#5038. MR**0161834 (28:5038)****[14]**G. F. B. RIEMANN, "Zur Theorie der Nobili'schen Farbenringe,"*Poggendorff's Annalen der Physik und Chemie*, Bd. 95, 1855, pp. 130-139. (Reprinted in*Bernhard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass*, Teubner, Leipzig, 1876, pp. 54-61.)**[15]**A. SCHÖNHAGE & V. STRASSEN, "Schnelle Multiplikation grosser Zahlen,"*Computing*, v. 7, 1971, pp. 281-292. MR**0292344 (45:1431)****[16]**D. W. SWEENEY, "On the computation of Euler's constant,"*Math. Comp.*, v. 17, 1963, pp. 170-178. MR**28**#3522. MR**0160308 (28:3522)****[17]**A. VAN DER POORTEN, "A proof that Euler missed-Apéry's proof of the irrationality of ,"*Mathematical Intelligence*, v. 1, 1979, pp. 196-203.**[18]**H. WALL,*Analytic Theory of Continued Fractions*, Van Nostrand, New York, 1948. MR**0025596 (10:32d)****[19]**G. N. WATSON,*A Treatise on the Theory of Bessel Functions*, 2nd ed., Cambridge Univ. Press, London, 1944. MR**0010746 (6:64a)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10-04,
10A40,
68C05

Retrieve articles in all journals with MSC: 10-04, 10A40, 68C05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1980-0551307-4

Keywords:
Euler's constant,
Mascheroni's constant,
gamma,
Bessel functions,
rational approximation,
regular continued fractions,
multiple-precision arithmetic,
Gauss-Kusmin law

Article copyright:
© Copyright 1980
American Mathematical Society