Numerical integrators for stiff and highly oscillatory differential equations
Author:
Simeon Ola Fatunla
Journal:
Math. Comp. 34 (1980), 373390
MSC:
Primary 65L05
MathSciNet review:
559191
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Some Lstable fourthorder explicit onestep numerical integration formulas which require no matrix inversion are proposed to cope effectively with systems of ordinary differential equations with large Lipschitz constants (including those having highly oscillatory solutions). The implicit integration procedure proposed in Fatunla [11] is further developed to handle a larger class of stiff systems as well as those with highly oscillatory solutions. The same pair of nonlinear equations as in [11] is solved for the stiffness/oscillatory parameters. However, the nonlinear systems are transformed into linear forms and an efficient computational procedure is developed to obtain these parameters. The new schemes compare favorably with the backward differentiation formula (DIFSUB) of Gear [13], [14] and the blended linear multistep methods of Skeel and Kong [24], and the symmetric multistep methods of Lambert and Watson [17].
 [1]
V. AMDURSKY & A. ZIV, On Numerical Treatment of Stiff, Highly Oscillatory Systems, IBM Technical Report 015, IBM Israel Scientific Center, 1974.
 [2]
V. AMDURSKY & A. ZIV, On the Numerical Solution of Stiff Linear Systems of the Oscillatory Type, IBM Technical Report 032, IBM Israel Scientific Center, 1975.
 [3]
V. AMDURSKY & A. ZIV, The Numerical Treatment of Linear Highly Oscillatory ODE Systems by Reduction to Nonoscillatory Types, IBM Technical Report 039, IBM Israel Scientific Center, 1976.
 [4]
G. BJUREL, G. DAHLQUIST, B. LINDBERG, S. LINDEN & L. ODEN, Survey of Stiff Ordinary Differential Equations, Computer Science Report NA 70.11, Royal Institute of Technology, Stockholm, Sweden, 1970.
 [5]
J.
C. Butcher, Implicit RungeKutta
processes, Math. Comp. 18 (1964), 50–64. MR 0159424
(28 #2641), http://dx.doi.org/10.1090/S00255718196401594249
 [6]
Germund
G. Dahlquist, A special stability problem for linear multistep
methods, Nordisk Tidskr. InformationsBehandling 3
(1963), 27–43. MR 0170477
(30 #715)
 [7]
W.
H. Enright, Second derivative multistep methods for stiff ordinary
differential equations, SIAM J. Numer. Anal. 11
(1974), 321–331. MR 0351083
(50 #3574)
 [8]
W. H. ENRIGHT, T. E. HULL & B. LINDBERG, ``Comparing numerical methods for stiff systems of ODEs,'' BIT, v. 15, 1975, pp. 1048.
 [9]
S. O. FATUNLA, ``A new algorithm for numerical solutions of ODEs,'' Comput. Math. Appl., v. 2, 1976, pp. 247253.
 [10]
Simeon
O. Fatunla, A variable order onestep scheme for numerical solution
of ordinary differential equations, Comput. Math. Appl.
4 (1978), no. 1, 33–41. MR 0501922
(58 #19147)
 [11]
Simeon
Ola. Fatunla, An implicit twopoint numerical
integration formula for linear and nonlinear stiff systems of ordinary
differential equations, Math. Comp.
32 (1978), no. 141, 1–11. MR 0474830
(57 #14461), http://dx.doi.org/10.1090/S00255718197804748300
 [12]
Walter
Gautschi, Numerical integration of ordinary differential equations
based on trigonometric polynomials, Numer. Math. 3
(1961), 381–397. MR 0138200
(25 #1647)
 [13]
C.
W. Gear, The automatic integration of stiff ordinary differential
equations., Information Processing 68 (Proc. IFIP Congress, Edinburgh,
1968) NorthHolland, Amsterdam, 1969, pp. 187–193. MR 0260180
(41 #4808)
 [14]
C. W. GEAR, ``Algorithm 407: DIFSUB for solution of ordinary differential equations,'' Comm. ACM, v. 14, 1971, pp. 185190.
 [15]
L.
W. Jackson and Surender
Kumar Kenue, A fourth order exponentially fitted method, SIAM
J. Numer. Anal. 11 (1974), 965–978. MR 0362926
(50 #15364)
 [16]
J.
D. Lambert, Nonlinear methods for stiff systems of ordinary
differential equations, Conference on the Numerical Solution of
Differential Equations (Univ. of Dundee, Dundee, 1973) Springer, Berlin,
1974, pp. 75–88. Lecture Notes in Math., Vol. 363. MR 0426436
(54 #14379)
 [17]
J.
D. Lambert and I.
A. Watson, Symmetric multistep methods for periodic initial value
problems, J. Inst. Math. Appl. 18 (1976), no. 2,
189–202. MR 0431691
(55 #4686)
 [18]
J.
Douglas Lawson, Generalized RungeKutta processes for stable
systems with large Lipschitz constants, SIAM J. Numer. Anal.
4 (1967), 372–380. MR 0221759
(36 #4811)
 [19]
Bengt
Lindberg, On smoothing and extrapolation for the trapezoidal
rule, Nordisk Tidskr. Informationsbehandling (BIT) 11
(1971), 29–52. MR 0281356
(43 #7074)
 [20]
W. LINIGER & R. A. WILLOUGHBY, Efficient Numerical Integration of Stiff Systems of Ordinary Differential Equations, IBM Research Report RC 1970, IBM, Yorktown Heights, New York, 1969.
 [21]
W.
L. Miranker and G.
Wahba, An averaging method for the stiff
highly oscillatory problem, Math. Comp.
30 (1976), no. 135, 383–399. MR 0423817
(54 #11791), http://dx.doi.org/10.1090/S00255718197604238170
 [22]
W.
L. Miranker, M.
van Veldhuizen, and G.
Wahba, Two methods for the stiff highly oscillatory problem,
Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity
Coll., Dublin, 1976) Academic Press, London, 1977,
pp. 257–273. MR 0657229
(58 #31849)
 [23]
W.
L. Miranker and M.
van Veldhuizen, The method of envelopes, Math. Comp. 32 (1978), no. 142, 453–496. MR 0494952
(58 #13727), http://dx.doi.org/10.1090/S00255718197804949528
 [24]
Robert
D. Skeel and Antony
K. Kong, Blended linear multistep methods, ACM Trans. Math.
Software 3 (1977), no. 4, 326–345. MR 0461922
(57 #1904)
 [25]
Arthur
David Snider and Gary
Charles Fleming, Approximation by aliasing with
application to “Certaine” stiff differential
equations, Math. Comp. 28 (1974), 465–473. MR 0343637
(49 #8377), http://dx.doi.org/10.1090/S00255718197403436373
 [26]
E.
Stiefel and D.
G. Bettis, Stabilization of Cowell’s method, Numer.
Math. 13 (1969), 154–175. MR 0263250
(41 #7855)
 [1]
 V. AMDURSKY & A. ZIV, On Numerical Treatment of Stiff, Highly Oscillatory Systems, IBM Technical Report 015, IBM Israel Scientific Center, 1974.
 [2]
 V. AMDURSKY & A. ZIV, On the Numerical Solution of Stiff Linear Systems of the Oscillatory Type, IBM Technical Report 032, IBM Israel Scientific Center, 1975.
 [3]
 V. AMDURSKY & A. ZIV, The Numerical Treatment of Linear Highly Oscillatory ODE Systems by Reduction to Nonoscillatory Types, IBM Technical Report 039, IBM Israel Scientific Center, 1976.
 [4]
 G. BJUREL, G. DAHLQUIST, B. LINDBERG, S. LINDEN & L. ODEN, Survey of Stiff Ordinary Differential Equations, Computer Science Report NA 70.11, Royal Institute of Technology, Stockholm, Sweden, 1970.
 [5]
 J. C. BUTCHER, ``Implicit RungeKutta processes,'' Math. Comp., v. 18, 1964, pp. 5064. MR 0159424 (28:2641)
 [6]
 G. DAHLQUIST, ``A special stability problem for linear multistep methods,'' BIT, v. 3, 1963, pp. 2743. MR 0170477 (30:715)
 [7]
 W. H. ENRIGHT, ``Second derivative multistep methods for stiff ordinary differential equations,'' SIAM J. Numer. Anal., v. 11 (2) 1974, pp. 321331. MR 0351083 (50:3574)
 [8]
 W. H. ENRIGHT, T. E. HULL & B. LINDBERG, ``Comparing numerical methods for stiff systems of ODEs,'' BIT, v. 15, 1975, pp. 1048.
 [9]
 S. O. FATUNLA, ``A new algorithm for numerical solutions of ODEs,'' Comput. Math. Appl., v. 2, 1976, pp. 247253.
 [10]
 S. O. FATUNLA, ``A variable order one step scheme for numerical solution of ODEs,'' Comput. Math. Appl., v. 4, 1978, pp. 3341. MR 0501922 (58:19147)
 [11]
 S. O. FATUNLA, ``An implicit twopoint numerical integration formula for linear and nonlinear stiff systems of ordinary differential equations,'' Math. Comp., v. 32, 1978, pp. 111. MR 0474830 (57:14461)
 [12]
 W. GAUTSCHI, ``Numerical integration of ODEs based on trigonometric polynomials,'' Numer. Math., v. 3, 1961, pp. 381397. MR 0138200 (25:1647)
 [13]
 C. W. GEAR, ``The automatic integration of stiff ordinary differential equations,'' Proc. IFIP Congress, vol. 1, NorthHolland, Amsterdam, 1968, pp. 187194. MR 0260180 (41:4808)
 [14]
 C. W. GEAR, ``Algorithm 407: DIFSUB for solution of ordinary differential equations,'' Comm. ACM, v. 14, 1971, pp. 185190.
 [15]
 L. W. JACKSON & S. K. KENUE, ``A fourth order exponentially fitted method,'' SIAM J. Numer. Anal., v. 11, 1974, pp. 965978. MR 0362926 (50:15364)
 [16]
 J. D. LAMBERT, ``Nonlinear methods for stiff systems of ordinary differential equations,'' Proc. Conference on Numerical Solution of Ordinary Differential Equations 363, University of Dundee, 1973, pp. 7588. MR 0426436 (54:14379)
 [17]
 J. D. LAMBERT & I. A. WATSON, ``Symmetric multistep methods for periodic initial value problems,'' J. Inst. Math. Appl., v. 18, 1976, pp. 189202. MR 0431691 (55:4686)
 [18]
 J. D. LAWSON, ``Generalized Runge Kutta processes for stable systems with large Lipschitz constants,'' SIAM J. Numer. Anal., v. 4, 1967, pp. 372380. MR 0221759 (36:4811)
 [19]
 B. LINDBERG, ``On smoothing and extrapolation for the trapezoidal rule,'' BIT, v. 11, 1971, pp. 2952. MR 0281356 (43:7074)
 [20]
 W. LINIGER & R. A. WILLOUGHBY, Efficient Numerical Integration of Stiff Systems of Ordinary Differential Equations, IBM Research Report RC 1970, IBM, Yorktown Heights, New York, 1969.
 [21]
 W. L. MIRANKER & G. WAHBA,"An averaging method for the stiff highly oscillatory problems,'' Math. Comp., v. 30, 1976, pp. 383399. MR 0423817 (54:11791)
 [22]
 W. L. MIRANKER, M. VAN VELDHUIZEN & G. WAHBA,"Two methods for the stiff highly oscillatory problem,'' Proc. Numerical Analysis Conference held in Dublin (J. Miller, Ed.), 1976, pp. 257273. MR 0657229 (58:31849)
 [23]
 W. L. MIRANKER & M. VAN VELDHUIZEN, The Method of Envelopes, IBM Research Report RC 6391 (#27537), Mathematics Division, IBM, Yorktown Heights, New York, 1977. MR 0494952 (58:13727)
 [24]
 R. D. SKEEL & A. K. KONG, Blended Linear Multistep Methods, UIUCDCSR76800, Dept. of Comput. Sci., Univ. of Illinois, Urbana, Ill., 1976. MR 0461922 (57:1904)
 [25]
 A. D. SNIDER & G. L. FLEMMING, ``Approximation by aliasing with application to ``Certaine'' stiff differential equations,'' Math. Comp., v. 28, 1974, pp. 465473. MR 0343637 (49:8377)
 [26]
 E. STIEFEL & D. G. BETTIS, ``Stabilization of Cowell's method,'' Numer. Math., v. 13, 1969, pp. 154175. MR 0263250 (41:7855)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L05
Retrieve articles in all journals
with MSC:
65L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571819800559191X
PII:
S 00255718(1980)0559191X
Keywords:
Stiffness and oscillatory parameters,
ordinary differential equations,
Lstable,
eigenvalues,
meshsize,
explicit,
implicit,
Astable,
exponential fitting
Article copyright:
© Copyright 1980
American Mathematical Society
