Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

On the $ L\sp{\infty }$-convergence of Galerkin approximations for second-order hyperbolic equations


Authors: Garth A. Baker and Vassilios A. Dougalis
Journal: Math. Comp. 34 (1980), 401-424
MSC: Primary 65M15; Secondary 65N30
MathSciNet review: 559193
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that certain classes of high order accurate Galerkin approximations for homogeneous second-order hyperbolic equations, known to possess optimal order rate of convergence in $ {L^2}$, also possess optimal order rate of convergence in $ {L^\infty }$.

This is attainable with particular smoothness assumptions on the initial data. We establish sufficient conditions for optimal $ {L^\infty }$-convergence of the approximations to the solution and also the approximation to its time derivative. This is done for both semidiscrete approximations and for single-step fully discrete approximations generated by rational functions.


References [Enhancements On Off] (What's this?)

  • [1] G. A. BAKER, ``Error estimates for finite element methods for second order hyperbolic equations,'' SIAM J. Numer. Anal., v. 13, 1976, pp. 564-576. MR 0423836 (54:11810)
  • [2] G. A. BAKER & J. H. BRAMBLE, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rep. No. 22, Centre de Mathématiques Apliquées, Ecole Polytechnique, Paris, 1977. Also RAIRO Analyse Numérique, v. 13, 1979, pp. 75-100. MR 533876 (80f:65115)
  • [3] G. A. BAKER, J. H. BRAMBLE & V. THOMÉE, ``Single step Galerkin approximations for parabolic problems,'' Math. Comp., v. 31, 1977, pp. 818-847. MR 0448947 (56:7252)
  • [4] J. H. BRAMBLE, A. H. SCHATZ, V. THOMÉE & L. B. WAHLBIN, ``Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations,'' SIAM J. Numer. Anal., v. 14, 1977, pp. 218-241. MR 0448926 (56:7231)
  • [5] F. E. BROWDER, ``Asymptotic distribution of eigenvalues and eigenfunctions for non-local elliptic boundary value problems. I,'' Amer. J. Math., v. 87, 1965, pp. 175-195. MR 0174858 (30:5049)
  • [6] C. CLARK, ``The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems,'' SIAM Rev., v. 9, 1967, pp. 627-646. MR 0510064 (58:23164)
  • [7] M. CROUZEIX, Sur l'Approximation des Equations Différentielles Opérationelles Linéaires par des Méthodes de Runge-Kutta, Thèse, Université Paris-VI, Paris, 1975.
  • [8] T. DUPONT, ``$ {L^2}$-estimates for Galerkin methods for second order hyperbolic equations,'' SIAM J. Numer. Anal., v. 10, 1973, pp. 880-889. MR 0349045 (50:1539)
  • [9] J. FREHSE & R. RANNACHER, ``Asymptotic $ {L^\infty }$-error estimates for linear finite element approximations of quasilinear boundary value problems,'' SIAM J. Numer. Anal., v. 15, 1978, pp. 418-431. MR 0502037 (58:19224)
  • [10] F. NATTERER, ``Über die punktweise Konvergenz finiter Elemente,'' Numer. Math., v. 25, 1975, pp. 67-77. MR 0474884 (57:14514)
  • [11] J. A. NITSCHE, $ {L^\infty }$-Convergence for Finite Element Approximation, 2nd Conf. on Finite Elements, Rennes, France, May 12-14, 1975.
  • [12] J. A. NITSCHE, ``On $ {L^\infty }$-convergence of finite element approximations to the solution of a nonlinear boundary value problem,'' Topics in Numerical Analysis III, Proc. Roy. Irish Acad. Conference on Numerical Analysis, 1976 (J. J. H. Miller, Ed.), Academic Press, London, 1977, pp. 317-325. MR 513215 (81i:65094)
  • [13] R. RANNACHER, ``Zur $ {L^\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-problem,'' Math. Z., v. 149, 1976, pp. 69-77. MR 0488859 (58:8361)
  • [14] R. SCOTT, ``Optimal $ {L^\infty }$-estimates for the finite element method on irregular meshes,'' Math. Comp., v. 30, 1976, pp. 681-697. MR 0436617 (55:9560)
  • [15] L. B. WAHLBIN, ``On maximum norm error estimates for Galerkin approximations to one-dimensional second order parabolic boundary value problems,'' SIAM J. Numer. Anal., v. 12, 1975, pp. 177-187. MR 0383785 (52:4665)
  • [16] M. F. WHEELER, `` $ {L^\infty }$-estimates of optimal orders for Galerkin methods for one-dimensional second order parabolic and hyperbolic equations,'' SIAM J. Numer. Anal., v. 10, 1973, pp. 908-913. MR 0343658 (49:8398)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M15, 65N30

Retrieve articles in all journals with MSC: 65M15, 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1980-0559193-3
Article copyright: © Copyright 1980 American Mathematical Society