Inductive formulae for general sum operations

Author:
Daniel Minoli

Journal:
Math. Comp. **34** (1980), 543-545

MSC:
Primary 65B15; Secondary 10J06, 40-04

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559202-1

MathSciNet review:
559202

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we report some computer generated formulae for the sum of powers of numbers with nonunitary increments; these reduce to the well-known cases when the increment is one.

**[1]***CRC Handbook of Tables for Probability and Statistics*(W. H. Beyer, Ed.), The Chemical Rubber Co., Cleveland, Ohio, 1966.**[2]**M. ABRAMOWITZ & I. STEGUN,*Handbook of Mathematical Functions*, Dover, New York, 1964.**[3]**D. MINOLI, ``Asymptotic form for the generalized factorial,''*Rev. Colombiana Mat.*, v. 11, 1977. MR**0567129 (58:27853)****[4]**K. S. MILLER,*An Introduction to the Calculus of Finite Differences and Difference Equations*, Holt, New York, 1960. MR**0115027 (22:5831)****[5]**C. JORDAN,*Calculus of Finite Differences*, 3rd ed., Chelsea, New York, 1965. MR**0183987 (32:1463)****[6]**F. B. HILDEBRAND,*Finite-Difference Equations and Simulations*, Prentice-Hall, Englewood Cliffs, N. J., 1968. MR**0228185 (37:3769)****[7]**G. BOOLE,*Calculus of Finite Differences*, 4th ed., Chelsea, New York, 1958. MR**0115025 (22:5830a)****[8]**I. S. GRADSHTEYN & I. M. RYZHIK,*Table of Integrals, Series, and Products*, 4th ed., Academic Press, New York, 1965.**[9]**ELDON R. HANSEN,*A Table of Series and Products*, Prentice-Hall, Englewood Cliffs, N. J., 1975.**[10]**I. J. SCHWATT,*An Introduction to the Operations with Series*, Univ. of Pennsylvania Press, 1924; reprinted by Chelsea, New York, 1962.

Retrieve articles in *Mathematics of Computation*
with MSC:
65B15,
10J06,
40-04

Retrieve articles in all journals with MSC: 65B15, 10J06, 40-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559202-1

Article copyright:
© Copyright 1980
American Mathematical Society