Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

High-precision values of the gamma function and of some related coefficients


Authors: Arne Fransén and Staffan Wrigge
Journal: Math. Comp. 34 (1980), 553-566
MSC: Primary 65A05; Secondary 65D20
DOI: https://doi.org/10.1090/S0025-5718-1980-0559204-5
Corrigendum: Math. Comp. 37 (1981), 233-235.
MathSciNet review: 559204
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we determine numerical values to 80D of the coefficients in the Taylor series expansion $ {\Gamma ^m}(s + x) = \Sigma _0^\infty {g_k}(m,s){x^k}$ for certain values of m and s and use these values to calculate $ \Gamma (p/q)\;(p,q = 1,2, \ldots ,10;\;p < q)$ and $ {\min _{x > 0}}\Gamma (x)$ to 80D. Finally, we obtain a high-precision value of the integral $ \smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$.


References [Enhancements On Off] (What's this?)

  • [1] M. ABRAMOWITZ & I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards, Appl. Math. Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29:4914)
  • [2] L. BOURGUET, ``Sur les intégrales Eulériennes et quelques autres fonctions uniformes,'' Acta Math., v. 2, 1883, pp. 261-295. MR 1554599
  • [3] B. D. CARTER & M. D. SPRINGER, ``The distribution of products, quotients and powers of independent H-function variates,'' SIAM J. Appl. Math., v. 33, 1977, pp. 542-558. MR 0483133 (58:3152)
  • [4] A. FRANSÉN, Concerning the Definite Integral $ \smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$, FOA Rapport, C10100-M4 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1978.
  • [5] A. FRANSEN, ``Accurate determination of the inverse gamma integral,'' BIT, v. 19, 1979, pp. 137-138. MR 530126 (80c:65047)
  • [6] D. C. GALAND & P. F. BYRD, ``High accuracy gamma function values for some rational arguments,'' Math. Comp., v. 22, 1968, pp. 885-887.
  • [7] M. L. GLASSER & V. E. WOOD, ``A closed form evaluation of the elliptic integral,'' Math. Comp., v. 25, 1971, pp. 535-536.
  • [8] K. KATAYAMA, ``On Ramanujan's formula for values of Riemann zeta-function at positive odd integers,'' Acta Arith., v. 22, 1973, pp. 149-155. MR 0321887 (48:252)
  • [9] A. H. MORRIS, JR., ``Table of the Riemann Zeta function for integer arguments,'' reviewed in Math. Comp., v. 27, 1973, pp. 673-674, RMT 32.
  • [10] A. H. MORRIS, JR., ``Tables of coefficients of the Maclaurin expansions of $ 1/\Gamma (z + 1)$ and $ 1/\Gamma (z + 2)$,'' reviewed in Math. Comp., v. 27, 1973, p. 674, RMT 32 and RMT 33.
  • [11] N. NIELSEN, Die Gammafunktion, Chelsea, New York, 1965.
  • [12] H. P. ROBINSON, Private communications, 1978-1979.
  • [13] J. W. WRENCH, JR., ``Concerning two series for the gamma function,'' Math. Comp., v. 22, 1968, pp. 617-626. MR 0237078 (38:5371)
  • [14] S. WRIGGE, Contributions to the Theory of Elliptic Integrals, FOA P Rapport, C 836-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1973.
  • [15] S. WRIGGE, ``An elliptic integral identity,'' Math. Comp., v. 27, 1973, pp. 839-840. MR 0324083 (48:2435)
  • [16] S. WRIGGE, Contributions to the Theory of Elliptic Integrals (Part 2), FOA Rapport, C10003-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1974.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65A05, 65D20

Retrieve articles in all journals with MSC: 65A05, 65D20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0559204-5
Keywords: Special functions, Gamma function, Riemann Zeta function
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society