Issues in nonlinear hyperperfect numbers
Author:
Daniel Minoli
Journal:
Math. Comp. 34 (1980), 639645
MSC:
Primary 10A20
MathSciNet review:
559206
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Hyperperfect numbers (HP) are a generalization of perfect numbers and as such share remarkably similar properties. In this note we show, among other things, that if is 2HP then , with , ; this is in agreement with the structure of the perfect case (1HP) stating that such a number is of the form with and .
 [1]
L. E. DICKSON, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
 [2]
H.
L. Abbott, C.
E. Aull, Ezra
Brown, and D.
Suryanarayana, Quasiperfect numbers, Acta Arith.
22 (1973), 439–447. MR 0316368
(47 #4915)
 [3]
M. KISHORE, ``Odd almost perfect numbers,'' Notices Amer. Math. Soc., v. 22, 1975, p. A380, Abstract #75FA92.
 [4]
R.
P. Jerrard and Nicholas
Temperley, Almost perfect numbers, Math. Mag.
46 (1973), 84–87. MR 0376511
(51 #12686)
 [5]
James
T. Cross, A note on almost perfect numbers, Math. Mag.
47 (1974), 230–231. MR 0354536
(50 #7014)
 [6]
Peter
Hagis Jr. and Graham
Lord, Quasiamicable numbers, Math. Comp. 31 (1977), no. 138, 608–611. MR 0434939
(55 #7902), http://dx.doi.org/10.1090/S00255718197704349393
 [7]
Henri
Cohen, On amicable and sociable
numbers, Math. Comp. 24 (1970), 423–429. MR 0271004
(42 #5887), http://dx.doi.org/10.1090/S00255718197002710046
 [8]
Paul
Bratley, Fred
Lunnon, and John
McKay, Amicable numbers and their
distribution, Math. Comp. 24 (1970), 431–432. MR 0271005
(42 #5888), http://dx.doi.org/10.1090/S00255718197002710058
 [9]
Walter
E. Beck and Rudolph
M. Najar, Fixed points of certain arithmetic functions,
Fibonacci Quart. 15 (1977), no. 4, 337–342. MR 0491437
(58 #10687)
 [10]
Peter
Hagis Jr., Lower bounds for relatively prime
amicable numbers of opposite parity., Math.
Comp. 24 (1970),
963–968. MR 0276167
(43 #1915), http://dx.doi.org/10.1090/S00255718197002761674
 [11]
Peter
Hagis Jr., Unitary amicable numbers, Math. Comp. 25 (1971), 915–918. MR 0299551
(45 #8599), http://dx.doi.org/10.1090/S00255718197102995512
 [12]
Masao
Kishore, Odd integers 𝑁 with five
distinct prime factors for which
210⁻¹²<𝜎(𝑁)/𝑁<2+10⁻¹²,
Math. Comp. 32 (1978), no. 141, 303–309. MR 0485658
(58 #5482a), http://dx.doi.org/10.1090/S0025571819780485658X
 [13]
Leonard
Eugene Dickson, Finiteness of the Odd Perfect and Primitive
Abundant Numbers with 𝑛 Distinct Prime Factors, Amer. J. Math.
35 (1913), no. 4, 413–422. MR
1506194, http://dx.doi.org/10.2307/2370405
 [14]
Peter
Hagis Jr., A lower bound for the set of odd
perfect numbers, Math. Comp. 27 (1973), 951–953. MR 0325507
(48 #3854), http://dx.doi.org/10.1090/S00255718197303255079
 [15]
Bryant
Tuckerman, A search procedure and lower bound for
odd perfect numbers, Math. Comp. 27 (1973), 943–949. MR 0325506
(48 #3853), http://dx.doi.org/10.1090/S00255718197303255067
 [16]
S.
J. Benkoski and P.
Erdős, On weird and pseudoperfect
numbers, Math. Comp. 28 (1974), 617–623. MR 0347726
(50 #228), http://dx.doi.org/10.1090/S00255718197403477269
 [17]
A. E. ZACHARIOV, ``Perfect, semiperfect and Ore numbers,'' Bull. Soc. Math. Grèce, v. 13, 1972, pp. 1222.
 [18]
Daniel
Minoli and Robert
Bear, Hyperperfect numbers, Pi Mu Epsilon J.
6 (1975), no. 3, 153–157. MR 0389749
(52 #10580)
 [19]
Daniel
Minoli, Structure issues for hyperperfect numbers, Fibonacci
Quart. 19 (1981), no. 1, 6–14. MR 606102
(82m:10011)
 [20]
D. M. YOUNG & R. T. GREGORY, A Survey of Numerical Analysis, AddisonWesley, Reading, Mass., 1973.
 [1]
 L. E. DICKSON, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.
 [2]
 H. L. ABBOT ET AL., ``Quasiperfect numbers,'' Acta. Arith., v. 22, 1973, pp. 439447. MR 47 #4915. MR 0316368 (47:4915)
 [3]
 M. KISHORE, ``Odd almost perfect numbers,'' Notices Amer. Math. Soc., v. 22, 1975, p. A380, Abstract #75FA92.
 [4]
 R. P. JERRARD & N. TEMPERLEY, ``Almost perfect numbers,'' Math. Mag., v. 46, 1973, pp. 8487. MR 0376511 (51:12686)
 [5]
 J. T. CROSS, ``A note on almost perfect numbers,'' Math. Mag., v. 47, 1974, pp. 230231. MR 0354536 (50:7014)
 [6]
 P. HAGIS & G. LORD, ``Quasiamicable numbers,'' Math. Comp., v. 31, 1977, pp. 608611. MR 0434939 (55:7902)
 [7]
 HENRI COHEN, ``On amicable and sociable numbers,'' Math. Comp., v. 24, 1970, pp. 423429. MR 0271004 (42:5887)
 [8]
 P. BRATLEY ET AL., ``Amicable numbers and their distribution,'' Math. Comp., v. 24, 1970, pp. 431432. MR 0271005 (42:5888)
 [9]
 W. E. BECK & R. M. NAJAR, ``More reduced amicable pairs,'' Fibonacci Quart., v. 15, 1977, pp. 331332. MR 0491437 (58:10687)
 [10]
 P. HAGIS, ``Lower bounds for relatively prime amicable numbers of opposite parity,'' Math. Comp., v. 24, 1970, pp. 963968. MR 0276167 (43:1915)
 [11]
 P. HAGIS, ``Unitary amicable numbers,'' Math. Comp., v. 25, 1971, pp. 915918. MR 0299551 (45:8599)
 [12]
 M. KISHORE, ``Odd integers N with five distinct prime factors for which ,'' Math. Comp., v. 32, 1978, pp. 303309. MR 0485658 (58:5482a)
 [13]
 L. E. DICKSON, ``Finiteness of the odd perfect and primitive abundant numbering with a distinct prime factor,'' Amer. J. Math., v. 35, 1913, pp. 413422. MR 1506194
 [14]
 P. HAGIS, ``A lower bound for the set of odd perfect numbers,'' Math. Comp., v. 27, 1973, pp. 951953. MR 0325507 (48:3854)
 [15]
 B. TUKERMAN, ``A search procedure and lower bound for odd perfect numbers,'' Math. Comp., v. 27, 1973, pp. 943949. MR 0325506 (48:3853)
 [16]
 J. BENKOSKI & P. ERDÖS, ``On weird and pseudo perfect numbers,'' Math. Comp., v. 28, 1974, pp. 617623. MR 0347726 (50:228)
 [17]
 A. E. ZACHARIOV, ``Perfect, semiperfect and Ore numbers,'' Bull. Soc. Math. Grèce, v. 13, 1972, pp. 1222.
 [18]
 D. MINOLI & R. BEAR, ``Hyperperfect numbers,'' Pi Mu Epsilon J., Fall, 1975, pp. 153157. MR 0389749 (52:10580)
 [19]
 D. MINOLI, ``Structural issues for hyperperfect numbers,'' Fibonacci Quart. (To appear.) MR 606102 (82m:10011)
 [20]
 D. M. YOUNG & R. T. GREGORY, A Survey of Numerical Analysis, AddisonWesley, Reading, Mass., 1973.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A20
Retrieve articles in all journals
with MSC:
10A20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198005592069
PII:
S 00255718(1980)05592069
Article copyright:
© Copyright 1980
American Mathematical Society
