Issues in nonlinear hyperperfect numbers

Author:
Daniel Minoli

Journal:
Math. Comp. **34** (1980), 639-645

MSC:
Primary 10A20

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559206-9

MathSciNet review:
559206

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Hyperperfect numbers (HP) are a generalization of perfect numbers and as such share remarkably similar properties. In this note we show, among other things, that if is 2-HP then , with , ; this is in agreement with the structure of the perfect case (1-HP) stating that such a number is of the form with and .

**[1]**L. E. DICKSON,*History of the Theory of Numbers*, Vol. 1, Chelsea, New York, 1952.**[2]**H. L. Abbott, C. E. Aull, Ezra Brown, and D. Suryanarayana,*Quasiperfect numbers*, Acta Arith.**22**(1973), 439–447. MR**0316368**, https://doi.org/10.4064/aa-22-4-439-447**[3]**M. KISHORE, ``Odd almost perfect numbers,''*Notices Amer. Math. Soc.*, v. 22, 1975, p. A-380, Abstract #75FA92.**[4]**R. P. Jerrard and Nicholas Temperley,*Almost perfect numbers*, Math. Mag.**46**(1973), 84–87. MR**0376511**, https://doi.org/10.2307/2689036**[5]**James T. Cross,*A note on almost perfect numbers*, Math. Mag.**47**(1974), 230–231. MR**0354536**, https://doi.org/10.2307/2689220**[6]**Peter Hagis Jr. and Graham Lord,*Quasi-amicable numbers*, Math. Comp.**31**(1977), no. 138, 608–611. MR**0434939**, https://doi.org/10.1090/S0025-5718-1977-0434939-3**[7]**Henri Cohen,*On amicable and sociable numbers*, Math. Comp.**24**(1970), 423–429. MR**0271004**, https://doi.org/10.1090/S0025-5718-1970-0271004-6**[8]**Paul Bratley, Fred Lunnon, and John McKay,*Amicable numbers and their distribution*, Math. Comp.**24**(1970), 431–432. MR**0271005**, https://doi.org/10.1090/S0025-5718-1970-0271005-8**[9]**Walter E. Beck and Rudolph M. Najar,*Fixed points of certain arithmetic functions*, Fibonacci Quart.**15**(1977), no. 4, 337–342. MR**0491437****[10]**Peter Hagis Jr.,*Lower bounds for relatively prime amicable numbers of opposite parity.*, Math. Comp.**24**(1970), 963–968. MR**0276167**, https://doi.org/10.1090/S0025-5718-1970-0276167-4**[11]**Peter Hagis Jr.,*Unitary amicable numbers*, Math. Comp.**25**(1971), 915–918. MR**0299551**, https://doi.org/10.1090/S0025-5718-1971-0299551-2**[12]**Masao Kishore,*Odd integers 𝑁 with five distinct prime factors for which 2-10⁻¹²<𝜎(𝑁)/𝑁<2+10⁻¹²*, Math. Comp.**32**(1978), no. 141, 303–309. MR**0485658**, https://doi.org/10.1090/S0025-5718-1978-0485658-X**[13]**Leonard Eugene Dickson,*Finiteness of the Odd Perfect and Primitive Abundant Numbers with 𝑛 Distinct Prime Factors*, Amer. J. Math.**35**(1913), no. 4, 413–422. MR**1506194**, https://doi.org/10.2307/2370405**[14]**Peter Hagis Jr.,*A lower bound for the set of odd perfect numbers*, Math. Comp.**27**(1973), 951–953. MR**0325507**, https://doi.org/10.1090/S0025-5718-1973-0325507-9**[15]**Bryant Tuckerman,*A search procedure and lower bound for odd perfect numbers*, Math. Comp.**27**(1973), 943–949. MR**0325506**, https://doi.org/10.1090/S0025-5718-1973-0325506-7**[16]**S. J. Benkoski and P. Erdős,*On weird and pseudoperfect numbers*, Math. Comp.**28**(1974), 617–623. MR**0347726**, https://doi.org/10.1090/S0025-5718-1974-0347726-9**[17]**A. E. ZACHARIOV, ``Perfect, semi-perfect and Ore numbers,''*Bull. Soc. Math. Grèce*, v. 13, 1972, pp. 12-22.**[18]**Daniel Minoli and Robert Bear,*Hyperperfect numbers*, Pi Mu Epsilon J.**6**(1975), no. 3, 153–157. MR**0389749****[19]**Daniel Minoli,*Structure issues for hyperperfect numbers*, Fibonacci Quart.**19**(1981), no. 1, 6–14. MR**606102****[20]**D. M. YOUNG & R. T. GREGORY,*A Survey of Numerical Analysis*, Addison-Wesley, Reading, Mass., 1973.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A20

Retrieve articles in all journals with MSC: 10A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0559206-9

Article copyright:
© Copyright 1980
American Mathematical Society