Generalized OCI schemes for boundary layer problems
Authors:
Alan E. Berger, Jay M. Solomon, Melvyn Ciment, Stephen H. Leventhal and Bernard C. Weinberg
Journal:
Math. Comp. 35 (1980), 695731
MSC:
Primary 65L10; Secondary 65M10
MathSciNet review:
572850
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A family of tridiagonal formally fourthorder difference schemes is developed for a class of singular perturbation problems. These schemes have no cell Reynolds number limitation and satisfy a discrete maximum principle. Error estimates and numerical results for this family of methods are given, and are compared with those for several other schemes.
 [1]
L.
R. Abrahamsson, H.
B. Keller, and H.
O. Kreiss, Difference approximations for singular perturbations of
systems of ordinary differential equations, Numer. Math.
22 (1974), 367–391. MR 0388784
(52 #9618)
 [2]
D.
N. de G. Allen and R.
V. Southwell, Relaxation methods applied to determine the motion,
in two dimensions, of a viscous fluid past a fixed cylinder, Quart. J.
Mech. Appl. Math. 8 (1955), 129–145. MR 0070367
(16,1171a)
 [3]
A. E. BERGER, J. M. SOLOMON & M. CIMENT, "On a uniformly accurate difference method for a singular perturbation problem." (In preparation.)
 [4]
T.
H. Chong, A variable mesh finite difference method for solving a
class of parabolic differential equations in one space variable, SIAM
J. Numer. Anal. 15 (1978), no. 4, 835–857. MR 0501973
(58 #19182)
 [5]
I. CHRISTIE & A. R. MITCHELL, "Upwinding of high order Galerkin methods in conductionconvection problems," Internat. J. Numer. Methods Engrg., v. 12, 1978, pp. 17641771.
 [6]
Melvyn
Ciment, Stephen
H. Leventhal, and Bernard
C. Weinberg, The operator compact implicit method for parabolic
equations, J. Comput. Phys. 28 (1978), no. 2,
135–166. MR
505588 (80a:65212a), http://dx.doi.org/10.1016/00219991(78)900311
 [7]
Fred
Dorr, The numerical solution of singular perturbations of boundary
value problems, SIAM J. Numer. Anal. 7 (1970),
281–313. MR 0267781
(42 #2683)
 [8]
Byron
L. Ehle, 𝐴stable methods and Padé approximations to
the exponential, SIAM J. Math. Anal. 4 (1973),
671–680. MR 0331787
(48 #10119)
 [9]
T. M. ELMISTIKAWY & M. J. WERLE, "Numerical method for boundary layers with blowingthe exponential box scheme," AIAA J., v. 16, 1978, pp. 749751.
 [10]
J. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ & A. R. MITCHELL, "An upwind finite element scheme for twodimensional convective transport equation," Internat. J. Numer. Methods Engrg., v. 11, 1977. pp. 131143.
 [11]
J. C. HEINRICH & O. C. ZIENKIEWICZ, "Quadratic finite element schemes for twodimensional convectivetransport problems," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 18311844.
 [12]
Richard
S. Hirsh and David
H. Rudy, The role of diagonal dominance and cell Reynolds number in
implicit difference methods for fluid mechanics problems, J.
Computational Phys. 16 (1974), 304–310. MR 0381512
(52 #2405)
 [13]
Thomas
J. R. Hughes, Wing
Kam Liu, and Alec
Brooks, Finite element analysis of incompressible viscous flows by
the penalty function formulation, J. Comput. Phys. 30
(1979), no. 1, 1–60. MR 524162
(80b:76008), http://dx.doi.org/10.1016/00219991(79)90086X
 [14]
A.
M. Il′in, A difference scheme for a differential equation
with a small parameter multiplying the highest derivative, Mat.
Zametki 6 (1969), 237–248 (Russian). MR 0260195
(41 #4823)
 [15]
Eugene
Isaacson and Herbert
Bishop Keller, Analysis of numerical methods, John Wiley &
Sons, Inc., New YorkLondonSydney, 1966. MR 0201039
(34 #924)
 [16]
R.
Bruce Kellogg and Alice
Tsan, Analysis of some difference
approximations for a singular perturbation problem without turning
points, Math. Comp. 32
(1978), no. 144, 1025–1039.
MR
0483484 (58 #3485), http://dx.doi.org/10.1090/S00255718197804834849
 [17]
HeinzOtto
Kreiss, Difference approximations for singular perturbation
problems, Numerical solutions of boundary value problems for ordinary
differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md.,
1974), Academic Press, New York, 1975, pp. 199–211. MR 0405869
(53 #9661)
 [18]
HeinzOtto
Kreiss and Nancy
Nichols, Numerical methods for singular perturbation problems,
Computing methods in applied sciences (Second Internat. Sympos.,Versailles,
1975) Springer, Berlin, 1976, pp. 544–558. Lecture Notes in
Phys., Vol. 58. MR 0445849
(56 #4182)
 [19]
D.
C. L. Lam and R.
B. Simpson, Centered differencing and the box scheme for diffusion
convection problems, J. Computational Phys. 22
(1976), no. 4, 486–500. MR 0475566
(57 #15165)
 [20]
J. J. H. MILLER, "Some finite difference schemes for a singular perturbation problem," in Constructive Function Theory, Proc. Internat. Conf. on Constr. Fcn. Theory, Blagoevgrad, 30 May4 June 1977. (To appear.)
 [21]
John
J. H. Miller, Sufficient conditions for the convergence, uniformly
in 𝜖, of a threepoint difference scheme for a singular
perturbation problem, Numerical treatment of differential equations in
applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977)
Lecture Notes in Math., vol. 679, Springer, Berlin, 1978,
pp. 85–91. MR 515572
(81i:65066)
 [22]
Carl
E. Pearson, On a differential equation of boundary layer type,
J. Math. and Phys. 47 (1968), 134–154. MR 0228189
(37 #3773)
 [23]
Murray
H. Protter and Hans
F. Weinberger, Maximum principles in differential equations,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
(36 #2935)
 [24]
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 [25]
Patrick
J. Roache, Computational fluid dynamics, Hermosa Publishers,
Albuquerque, N.M., 1976. With an appendix (“On artificial
viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2,
169–184; Revised printing. MR 0411358
(53 #15094)
 [26]
Donald
R. Smith, The multivariable method in singular perturbation
analysis, SIAM Rev. 17 (1975), 221–273. MR 0361331
(50 #13776)
 [27]
B. K. SWARTZ, "The construction of finite difference analogs of some finite element schemes," in Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), Academic Press, New York, 1974, pp. 279312.
 [28]
M.
van Veldhuizen, Higher order methods for a singularly perturbed
problem, Numer. Math. 30 (1978), no. 3,
267–279. MR 0501937
(58 #19156)
 [29]
M.
van Veldhuizen, Higher order schemes of positive type for singular
perturbation problems, Numerical analysis of singular perturbation
problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978)
Academic Press, LondonNew York, 1979, pp. 361–383. MR 556526
(81g:65114)
 [30]
Richard
S. Varga, Matrix iterative analysis, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1962. MR 0158502
(28 #1725)
 [1]
 L. R. ABRAHAMSSON, H. B. KELLER & H.O. KREISS, "Difference approximations for singular perturbations of systems of ordinary differential equations," Numer. Math., v. 22, 1974, pp. 367391. MR 0388784 (52:9618)
 [2]
 D. N. DE G. ALLEN & R. V. SOUTHWELL, "Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder," Quart. J. Mech. Appl. Math., v. 8, 1955, pp. 129145. MR 0070367 (16:1171a)
 [3]
 A. E. BERGER, J. M. SOLOMON & M. CIMENT, "On a uniformly accurate difference method for a singular perturbation problem." (In preparation.)
 [4]
 T. H. CHONG, "A variable mesh finite difference method for solving a class of parabolic differential equations in one space variable," SIAM J. Numer. Anal., v. 15, 1978, pp. 835857. MR 0501973 (58:19182)
 [5]
 I. CHRISTIE & A. R. MITCHELL, "Upwinding of high order Galerkin methods in conductionconvection problems," Internat. J. Numer. Methods Engrg., v. 12, 1978, pp. 17641771.
 [6]
 M. CIMENT, S. H. LEVENTHAL & B. C. WEINBERG, "The operator compact implicit method for parabolic equations," J. Computational Phys., v. 28, 1978, pp. 135166. MR 505588 (80a:65212a)
 [7]
 F. W. DORR, "The numerical solution of singular perturbations of boundary value problems," Siam J. Numer. Anal., v. 7, 1970, pp. 281313. MR 0267781 (42:2683)
 [8]
 B. L. EHLE, "Astable methods and Fade approximations to the exponential," SIAM J. Math. Anal., v. 4, 1973, pp. 671680. MR 0331787 (48:10119)
 [9]
 T. M. ELMISTIKAWY & M. J. WERLE, "Numerical method for boundary layers with blowingthe exponential box scheme," AIAA J., v. 16, 1978, pp. 749751.
 [10]
 J. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ & A. R. MITCHELL, "An upwind finite element scheme for twodimensional convective transport equation," Internat. J. Numer. Methods Engrg., v. 11, 1977. pp. 131143.
 [11]
 J. C. HEINRICH & O. C. ZIENKIEWICZ, "Quadratic finite element schemes for twodimensional convectivetransport problems," Internat. J. Numer. Methods Engrg., v. 11, 1977, pp. 18311844.
 [12]
 R. S. HIRSH & D. H. RUDY, "The role of diagonal dominance and cell Reynolds number in implicit difference methods for fluid mechanics problems," J. Computational Phys., v. 25, 1974, pp. 304310. MR 0381512 (52:2405)
 [13]
 T. J. R. HUGHES, W. K. LIU & A. BROOKS, "Finite element analysis of incompressible viscous flows by the penalty function formulation," J. Computational Phys., v. 30, 1979, pp. 160. MR 524162 (80b:76008)
 [14]
 A. M. IL'IN, "Differencing scheme for a differential equation with a small parameter affecting the highest derivative," Mat. Zametki, v. 6, 1969, pp. 237248 = Math. Notes, v. 6, 1969, pp. 596602. MR 0260195 (41:4823)
 [15]
 E. ISAACSON & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966. MR 0201039 (34:924)
 [16]
 R. B. KELLOGG & A. TSAN, "Analysis of some difference approximations for a singular perturbation problem without turning points," Math. Camp., v. 32, 1978, pp. 10251039. MR 0483484 (58:3485)
 [17]
 H.O. KREISS, "Difference approximations for singular perturbation problems," Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations (A. K. Aziz, Ed.), Academic Press, New York, 1975, pp. 199211. MR 0405869 (53:9661)
 [18]
 H.O. KREISS & N. NICHOLS, Numerical Methods for Singular Perturbation Problems, Lecture Notes in Phys., Vol. 58 (R. Glowinski and J. L. Lions, Eds.), SpringerVerlag, Berlin, 1976, pp. 544558. MR 0445849 (56:4182)
 [19]
 D. C. L. LAM & R. B. SIMPSON, "Centered differencing and the box scheme for diffusion convection problems," J. Computational Phys., v. 22, 1976, pp. 486500. MR 0475566 (57:15165)
 [20]
 J. J. H. MILLER, "Some finite difference schemes for a singular perturbation problem," in Constructive Function Theory, Proc. Internat. Conf. on Constr. Fcn. Theory, Blagoevgrad, 30 May4 June 1977. (To appear.)
 [21]
 J. J. H. MILLER, "Sufficient conditions for the convergence, uniformly in epsilon, of a three point difference scheme for a singular perturbation problem," in Praktische Behandlung von Differentialgleichungen in Anwendungsgebieten (Proc. Conf., Oberwolfach, 1977), Lecture Notes in Math., Springer, Berlin. (To appear.) MR 515572 (81i:65066)
 [22]
 C. E. PEARSON, "On a differential equation of boundary layer type," J. Math. and Phys., v. 49, 1968, pp. 134154. MR 0228189 (37:3773)
 [23]
 M. H. PROTTER & H. F. WEINBERGER, Maximum Principles in Differential Equations, PrenticeHall, Englewood Cliffs, N. J., 1967. MR 0219861 (36:2935)
 [24]
 R. D. RICHTMYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Interscience, New York, 1967. MR 0220455 (36:3515)
 [25]
 P. J. ROACHE, Computational Fluid Dynamics, Hermosa, Albuquerque, N. M., 1972. MR 0411358 (53:15094)
 [26]
 D. R. SMITH, "The multivariable method in singular perturbation analysis," SIAM Rev., v. 17, 1975, pp. 221273. MR 0361331 (50:13776)
 [27]
 B. K. SWARTZ, "The construction of finite difference analogs of some finite element schemes," in Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), Academic Press, New York, 1974, pp. 279312.
 [28]
 M. VAN VELDHUIZEN, "Higher order methods for a singularly perturbed problem," Numer. Math., v. 30, 1978, pp. 267279. MR 0501937 (58:19156)
 [29]
 M. VAN VELDHUIZEN, "Higher order schemes of positive type for singular perturbation problems," Numerical Analysis of Singular Perturbation Problems (P. W. Hemker and J. J. H. Miller, Eds.), Academic Press, New York, 1979, pp. 361383. MR 556526 (81g:65114)
 [30]
 R. S. VARGA, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N. J., 1962. MR 0158502 (28:1725)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L10,
65M10
Retrieve articles in all journals
with MSC:
65L10,
65M10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198005728508
PII:
S 00255718(1980)05728508
Article copyright:
© Copyright 1980
American Mathematical Society
