Generalized OCI schemes for boundary layer problems

Authors:
Alan E. Berger, Jay M. Solomon, Melvyn Ciment, Stephen H. Leventhal and Bernard C. Weinberg

Journal:
Math. Comp. **35** (1980), 695-731

MSC:
Primary 65L10; Secondary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1980-0572850-8

MathSciNet review:
572850

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A family of tridiagonal formally fourth-order difference schemes is developed for a class of singular perturbation problems. These schemes have no cell Reynolds number limitation and satisfy a discrete maximum principle. Error estimates and numerical results for this family of methods are given, and are compared with those for several other schemes.

**[1]**L. R. Abrahamsson, H. B. Keller, and H. O. Kreiss,*Difference approximations for singular perturbations of systems of ordinary differential equations*, Numer. Math.**22**(1974), 367–391. MR**0388784**, https://doi.org/10.1007/BF01436920**[2]**D. N. de G. Allen and R. V. Southwell,*Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder*, Quart. J. Mech. Appl. Math.**8**(1955), 129–145. MR**0070367**, https://doi.org/10.1093/qjmam/8.2.129**[3]**A. E. BERGER, J. M. SOLOMON & M. CIMENT, "On a uniformly accurate difference method for a singular perturbation problem." (In preparation.)**[4]**T. H. Chong,*A variable mesh finite difference method for solving a class of parabolic differential equations in one space variable*, SIAM J. Numer. Anal.**15**(1978), no. 4, 835–857. MR**0501973**, https://doi.org/10.1137/0715055**[5]**I. CHRISTIE & A. R. MITCHELL, "Upwinding of high order Galerkin methods in conduction-convection problems,"*Internat. J. Numer. Methods Engrg.*, v. 12, 1978, pp. 1764-1771.**[6]**Melvyn Ciment, Stephen H. Leventhal, and Bernard C. Weinberg,*The operator compact implicit method for parabolic equations*, J. Comput. Phys.**28**(1978), no. 2, 135–166. MR**505588**, https://doi.org/10.1016/0021-9991(78)90031-1

Melvyn Ciment, Stephen H. Leventhal, and Bernard C. Weinberg,*Erratum: “The operator compact implicit method for parabolic equations” (J. Comput. Phys. 28 (1978), no. 2, 135–166)*, J. Comput. Phys.**29**(1978), no. 1, 145. MR**510465**, https://doi.org/10.1016/0021-9991(78)90116-X**[7]**Fred Dorr,*The numerical solution of singular perturbations of boundary value problems*, SIAM J. Numer. Anal.**7**(1970), 281–313. MR**0267781**, https://doi.org/10.1137/0707021**[8]**Byron L. Ehle,*𝐴-stable methods and Padé approximations to the exponential*, SIAM J. Math. Anal.**4**(1973), 671–680. MR**0331787**, https://doi.org/10.1137/0504057**[9]**T. M. EL-MISTIKAWY & M. J. WERLE, "Numerical method for boundary layers with blowing--the exponential box scheme,"*AIAA J.*, v. 16, 1978, pp. 749-751.**[10]**J. C. HEINRICH, P. S. HUYAKORN, O. C. ZIENKIEWICZ & A. R. MITCHELL, "An upwind finite element scheme for two-dimensional convective transport equation,"*Internat. J. Numer. Methods Engrg.*, v. 11, 1977. pp. 131-143.**[11]**J. C. HEINRICH & O. C. ZIENKIEWICZ, "Quadratic finite element schemes for two-dimensional convective-transport problems,"*Internat. J. Numer. Methods Engrg.*, v. 11, 1977, pp. 1831-1844.**[12]**Richard S. Hirsh and David H. Rudy,*The role of diagonal dominance and cell Reynolds number in implicit difference methods for fluid mechanics problems*, J. Computational Phys.**16**(1974), 304–310. MR**0381512****[13]**Thomas J. R. Hughes, Wing Kam Liu, and Alec Brooks,*Finite element analysis of incompressible viscous flows by the penalty function formulation*, J. Comput. Phys.**30**(1979), no. 1, 1–60. MR**524162**, https://doi.org/10.1016/0021-9991(79)90086-X**[14]**A. M. Il′in,*A difference scheme for a differential equation with a small parameter multiplying the highest derivative*, Mat. Zametki**6**(1969), 237–248 (Russian). MR**0260195****[15]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[16]**R. Bruce Kellogg and Alice Tsan,*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**0483484**, https://doi.org/10.1090/S0025-5718-1978-0483484-9**[17]**Heinz-Otto Kreiss,*Difference approximations for singular perturbation problems*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 199–211. MR**0405869****[18]**Heinz-Otto Kreiss and Nancy Nichols,*Numerical methods for singular perturbation problems*, Computing methods in applied sciences (Second Internat. Sympos.,Versailles, 1975) Springer, Berlin, 1976, pp. 544–558. Lecture Notes in Phys., Vol. 58. MR**0445849****[19]**D. C. L. Lam and R. B. Simpson,*Centered differencing and the box scheme for diffusion convection problems*, J. Computational Phys.**22**(1976), no. 4, 486–500. MR**0475566****[20]**J. J. H. MILLER, "Some finite difference schemes for a singular perturbation problem," in*Constructive Function Theory*, Proc. Internat. Conf. on Constr. Fcn. Theory, Blagoevgrad, 30 May-4 June 1977. (To appear.)**[21]**John J. H. Miller,*Sufficient conditions for the convergence, uniformly in 𝜖, of a three-point difference scheme for a singular perturbation problem*, Numerical treatment of differential equations in applications (Proc. Meeting, Math. Res. Center, Oberwolfach, 1977) Lecture Notes in Math., vol. 679, Springer, Berlin, 1978, pp. 85–91. MR**515572****[22]**Carl E. Pearson,*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**0228189****[23]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[24]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[25]**Patrick J. Roache,*Computational fluid dynamics*, Hermosa Publishers, Albuquerque, N.M., 1976. With an appendix (“On artificial viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2, 169–184; Revised printing. MR**0411358****[26]**Donald R. Smith,*The multivariable method in singular perturbation analysis*, SIAM Rev.**17**(1975), 221–273. MR**0361331**, https://doi.org/10.1137/1017032**[27]**B. K. SWARTZ, "The construction of finite difference analogs of some finite element schemes," in*Mathematical Aspects of Finite Elements in Partial Differential Equations*(C. de Boor, Ed.), Academic Press, New York, 1974, pp. 279-312.**[28]**M. van Veldhuizen,*Higher order methods for a singularly perturbed problem*, Numer. Math.**30**(1978), no. 3, 267–279. MR**0501937**, https://doi.org/10.1007/BF01411843**[29]**M. van Veldhuizen,*Higher order schemes of positive type for singular perturbation problems*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 361–383. MR**556526****[30]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
65M10

Retrieve articles in all journals with MSC: 65L10, 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0572850-8

Article copyright:
© Copyright 1980
American Mathematical Society