Recursive algorithms for the matrix Padé problem
Author:
Adhemar Bultheel
Journal:
Math. Comp. 35 (1980), 875892
MSC:
Primary 41A21; Secondary 65D15
MathSciNet review:
572862
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A matrix triangularization interpretation is given for the recursive algorithms computing the Padé approximants along a certain path in the Padé table, which makes it possible to unify all known algorithms in this field [5], [6]. For the normal Padé table, all these results carry over to the matrix Padé problem in a straightforward way. Additional features, resulting from the noncommutativity are investigated. A generalization of the TrenchZohar algorithm and related recursions are studied in greater detail.
 [1]
Hirotugu
Akaike, Block Toeplitz matrix inversion, SIAM J. Appl. Math.
24 (1973), 234–241. MR 0362864
(50 #15302)
 [2]
Glen
Baxter, Polynomials defined by a difference system, J. Math.
Anal. Appl. 2 (1961), 223–263. MR 0126125
(23 #A3421)
 [3]
D. BESSIS, "Topics in the theory of Padé approximants," in Padé Approximants (P. R. GravesMorris, Ed.), The institute of Physics, LondonBristol, 1973, pp. 1944.
 [4]
A.
Bultheel, Division algorithms for continued fractions and the
Padé table, J. Comput. Appl. Math. 6 (1980),
no. 4, 259–266. MR 601538
(82h:65011), http://dx.doi.org/10.1016/0771050X(80)900340
 [5]
A. BULTHEEL, "Fast factorization algorithms and Padé approximation: a survey." (Submitted.)
 [6]
A.
Bultheel, Recursive algorithms for the Padé table: two
approaches, Padé approximation and its applications (Proc.
Conf., Univ. Antwerp, Antwerp, 1979) Lecture Notes in Math.,
vol. 765, Springer, Berlin, 1979, pp. 211–230. MR 561452
(81h:65013)
 [7]
Philippe
Delsarte, Yves
V. Genin, and Yves
G. Kamp, Orthogonal polynomial matrices on the unit circle,
IEEE Trans. Circuits and Systems CAS25 (1978),
no. 3, 149–160. MR 0481886
(58 #1981)
 [8]
Bradley
W. Dickinson, Martin
Morf, and Thomas
Kailath, A minimal realization algorithm for matrix sequences,
IEEE Trans. Automatic Control AC19 (1974), 31–38.
MR
0363556 (50 #15994)
 [9]
L.
Ya. Geronimus, Orthogonal polynomials: Estimates, asymptotic
formulas, and series of polynomials orthogonal on the unit circle and on an
interval, Authorized translation from the Russian, Consultants Bureau,
New York, 1961. MR 0133643
(24 #A3469)
 [10]
William
B. Gragg, Laurent, Fourier, and ChebyshevPadé tables,
Padé and rational approximation (Proc. Internat. Sympos., Univ.
South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977,
pp. 61–72. MR 0477569
(57 #17088)
 [11]
Norman
Levinson, The Wiener RMS (root mean square) error criterion in
filter design and prediction, J. Math. Phys. Mass. Inst. Tech.
25 (1947), 261–278. MR 0019257
(8,391e)
 [12]
A. MORF, A. VIEIRA & D. T. LEE, Ladder Forms for Identification and Speech Processing, Proc. Conf. on Decision and Control, New Orleans, Louisiana, Dec. 79, 1977.
 [13]
J.
Rissanen, Algorithms for triangular
decomposition of block Hankel and Toeplitz matrices with application to
factoring positive matrix polynomials, Math.
Comp. 27 (1973),
147–154. MR 0329235
(48 #7577), http://dx.doi.org/10.1090/S00255718197303292355
 [14]
G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
 [15]
William
F. Trench, An algorithm for the inversion of finite Toeplitz
matrices, J. Soc. Indust. Appl. Math. 12 (1964),
515–522. MR 0173681
(30 #3891)
 [16]
William
F. Trench, An algorithm for the inversion of finite Hankel
matrices, J. Soc. Indust. Appl. Math. 13 (1965),
1102–1107. MR 0189232
(32 #6659)
 [17]
Ralph
A. Wiggins and Enders
A. Robinson, Recursive solution to the multichannel filtering
problem, J. Geophys. Res. 70 (1965), 1885–1891.
MR
0183107 (32 #589)
 [18]
Shalhav
Zohar, Toeplitz matrix inversion: The algoritm of W. F.
Trench, J. Assoc. Comput. Mach. 16 (1969),
592–601. MR 0247762
(40 #1023)
 [1]
 H. AKAIKE, "Block Toeplitz matrix inversion," SIAM J. Appl. Math., v. 24, 1973, pp. 234241. MR 0362864 (50:15302)
 [2]
 G. BAXTER, "Polynomials defined by a difference system," J. Math. Anal. Appl., v. 2, 1961, pp. 223263. MR 0126125 (23:A3421)
 [3]
 D. BESSIS, "Topics in the theory of Padé approximants," in Padé Approximants (P. R. GravesMorris, Ed.), The institute of Physics, LondonBristol, 1973, pp. 1944.
 [4]
 A. BULTHEEL, "Division algorithms for continued fractions and the Padé table," J. Comput. Appl. Math. (To appear.) MR 601538 (82h:65011)
 [5]
 A. BULTHEEL, "Fast factorization algorithms and Padé approximation: a survey." (Submitted.)
 [6]
 A. BULTHEEL, "Recursive algorithms for the Padé table: Two approaches," in Padé Approximation and its Applications (L. Wuytack, Ed.), Lecture Notes in Math., vol. 765, SpringerVerlag, Berlin, 1979, pp. 211230. MR 561452 (81h:65013)
 [7]
 P. DELSARTE, Y. GENIN & Y. KAMP, "Orthogonal polynomial matrices on the unit circle," IEEE Trans. Circuits and Systems, CAS25, 1978, pp. 149160. MR 0481886 (58:1981)
 [8]
 B. W. DICKINSON, M. MORF & T. KAILATH, "A minimal realization algorithm for matrix sequences," IEEE Trans. Automatic Control, AC10, 1974, pp. 3138. MR 0363556 (50:15994)
 [9]
 L. Y. GERONIMUS, Orthogonal Polynomials, Consultants Bureau, New York, 1961. MR 0133643 (24:A3469)
 [10]
 W. B. GRAGG, "Laurent, Fourier and Chebyshev Padé tables," in Padé and Rational Approximation, Theory and Applications (E. B. Saff and R. S. Varga, Eds.), Academic Press, New York, 1977, pp. 6172. MR 0477569 (57:17088)
 [11]
 N. LEVINSON, "The Wiener RMS (root mean square) error criterion in filter design and prediction," J. Mathematical Phys., v. 25, 1947, pp. 261278. MR 0019257 (8:391e)
 [12]
 A. MORF, A. VIEIRA & D. T. LEE, Ladder Forms for Identification and Speech Processing, Proc. Conf. on Decision and Control, New Orleans, Louisiana, Dec. 79, 1977.
 [13]
 J. RISSANEN, "Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials," Math. Comp., v. 27, 1973, pp. 147154. MR 0329235 (48:7577)
 [14]
 G. SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
 [15]
 W. F. TRENCH, "An algorithm for the inversion of finite Toeplitz matrices," SIAM J. Appl. Math., v. 12, 1964, pp. 515522. MR 0173681 (30:3891)
 [16]
 W. F. TRENCH, "An algorithm for the inversion of finite Hankel matrices," SIAM J. Appl. Math., v. 13, 1965, pp. 11021107. MR 0189232 (32:6659)
 [17]
 R. A. WIGGINS & E. A. ROBINSON, "Recursive solution to the multichannel filtering problem," J. Geophys. Res., v. 70, 1965, pp. 18851891. MR 0183107 (32:589)
 [18]
 S. ZOHAR, "Toeplitz matrix inversion. The algorithm of W. F. Trench," J. Assoc. Comput. Mach., v. 16, 1969, pp. 592601. MR 0247762 (40:1023)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
41A21,
65D15
Retrieve articles in all journals
with MSC:
41A21,
65D15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198005728624
PII:
S 00255718(1980)05728624
Keywords:
Hankel and Toeplitz matrices,
triangular decomposition of matrices,
fast algorithms,
rational approximation
Article copyright:
© Copyright 1980
American Mathematical Society
