Analysis of Mixed Methods Using Mesh Dependent Norms*

By I. Babuška, J. Osborn and J. Pitkäranta

Abstract. This paper analyzes mixed methods for the biharmonic problem by means of new families of mesh dependent norms which are introduced and studied. More specifically, several mixed methods are shown to be stable with respect to these norms and, as a consequence, error estimates are obtained in a simple and direct manner.

1. Introduction. In [5] Brezzi studied Ritz-Galerkin approximation of saddle-point problems arising in connection with Lagrange multipliers. These problems have the form:

Given \(f \in V' \) and \(g \in W' \), find \((u, \psi) \in V \times W\) satisfying

\[
\begin{align*}
(a(u, v) + b(v, \psi) &= (f, v) \quad \forall v \in V, \\
b(u, \varphi) &= (g, \varphi) \quad \forall \varphi \in W,
\end{align*}
\]

(1.1)

where \(V \) and \(W \) are real Hilbert spaces and \(a(\cdot, \cdot) \) and \(b(\cdot, \cdot) \) are bounded bilinear forms on \(V \times V \) and \(V \times W \), respectively.

Given finite-dimensional spaces \(V_h \subset V \) and \(W_h \subset W \), indexed by the parameter \(0 < h < 1 \), the Ritz-Galerkin approximation \((u_h, \psi_h)\) to \((u, \psi)\) is defined as the solution of the problem:

Find \((u_h, \psi_h) \in V_h \times W_h\) satisfying

\[
\begin{align*}
(a(u_h, v) + b(v, \psi_h) &= (f, v) \quad \forall v \in V_h, \\
b(u_h, \varphi) &= (g, \varphi) \quad \forall \varphi \in W_h.
\end{align*}
\]

(1.2)

The major assumptions in Brezzi's results are

\[
\sup_{u \in Z_h} \frac{|a(u, v)|}{\|v\|_V} \geq \gamma_0 \|u\|_V \quad \forall u \in Z_h \text{ and } \forall h,
\]

(1.3)

where \(\gamma_0 > 0 \) is independent of \(h \), and \(Z_h = \{v \in V_h : b(v, \varphi) = 0 \ \forall \varphi \in W_h\} \), and

\[
\sup_{v \in V_h} \frac{|b(v, \varphi)|}{\|v\|_V} \geq k_0 \|\varphi\|_W \quad \forall \varphi \in W_h \text{ and } \forall h,
\]

(1.4)

Received October 2, 1979.

1980 Mathematics Subject Classification. Primary 65N15, 65N30.

Key words and phrases. Mixed methods, error estimates, stability.

* Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is based upon work supported by the National Science Foundation under Grant MCS78-02851 and the Department of Energy under Contract No. E (40-1)3443.

© 1980 American Mathematical Society

0025-5718/80/0000-0150/$07.00

1039

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where $k_0 > 0$ is independent of h. Using (1.3) and (1.4), Brezzi proves the following error estimate for the approximation method determined by (1.2):

$$\|u - u_h\|_V + \|\psi - \psi_h\|_W \leq C \left(\inf_{\chi \in V_h} \|u - \chi\|_V + \inf_{\eta \in W_h} \|\psi - \eta\|_W \right) \quad \forall h,$$

where C is independent of h.

In [1], [2] Babuška studied Ritz-Galerkin approximation of general, variationally posed problems. The main result of [1], [2], as applied to (1.1) and (1.2), is that (1.5) holds provided

$$\sup_{(v, \varphi) \in V_h \times W_h} \frac{|a(u, v) + b(v, \psi) + b(\eta, \varphi)|}{\|v\|_V + \|\varphi\|_W} \geq \tau_0 (\|u\|_V + \|\psi\|_W)$$

$$\forall (u, \psi) \in V_h \times W_h \text{ and } \forall h,$$

where $\tau_0 > 0$ is independent of h. It is clear from [1], [2] that (1.3) and (1.4) hold if and only if (1.6) holds. (1.3)–(1.4) or, equivalently, (1.6) is referred to as the stability condition for this approximation method.

The results of [1], [2], [5] can be viewed as a strategy for analyzing such approximation methods: the approximation method is characterized by certain bilinear forms, norms (spaces), and families of finite-dimensional approximation spaces, and if the method can be shown to be stable with respect to the chosen norms, then the error estimates in these norms follow directly, provided the bilinear forms are bounded and the approximation properties of V_h and W_h are known in these norms. These results can be used to analyze, for example, certain hybrid methods for the biharmonic problem [5], [6]. The results of [1], [2] have also been used to analyze a variety of variationally posed problems that do not have the form (1.1).

There are other problems of a similar nature, however, where attempts at using the results of [1], [2], [5] were not entirely successful since not all of the hypotheses were satisfied: specifically, the Brezzi condition (1.3) or, equivalently, the Babuška condition (1.6), is not satisfied with the usual choice of norms, i.e., the approximation methods for these problems are not stable with respect to the usual choice of norms. This is the case, for example, in the analysis [7] of the Herrmann-Miyoshi [15], [16], [20] mixed method for the biharmonic problem. In the analysis of this method, a natural choice for both $\|\cdot\|_V$ and $\|\cdot\|_W$ is the 1st order Sobolev norm; however, this method is not stable with respect to this choice of norms. As a result of this difficulty, the error estimates obtained in [5] are not optimal. A similar difficulty arises in the analysis of the Herrmann-Johnson [15], [16], [17] and Ciarlet-Raviart [9] mixed methods for the biharmonic problem. In later work of Scholz [23] and Rannacher [22], optimal error estimates were obtained for the mixed methods of Ciarlet-Raviart and Herrmann-Miyoshi. In a forthcoming paper, Falk-Osborn [12] develop abstract results from which optimal error estimates for these and other problems can be derived. However, in neither the work of Scholz
It is the purpose of this paper to analyze mixed methods for the biharmonic problem by means of the results of Brezzi and Babuška. This is done by introducing a new family of (mesh dependent) norms with respect to which the above-mentioned mixed methods (Ciarlet-Raviart, Herrmann-Miyoshi, Herrmann-Johnson) are stable. Once the stability condition has been checked and the approximation properties of the subspaces \(V_h \) and \(W_h \) have been determined in these new norms, the error estimates in these norms follow immediately from the abstract results of Brezzi and Babuška. Error estimates in the more standard norms are then obtained by using the usual duality argument. The results of this paper were announced in [21]. We also note that the methods employed in this paper have been applied to two-point boundary value problems in [3].

Section 2 contains a review of the convergence results of Brezzi and Babuška. In Section 3 we introduce and study the mesh dependent norms and spaces used in the analysis in this paper. In Section 4 we treat three examples previously analyzed in the literature and show how error estimates can be derived from the abstract results in Section 2, used in conjunction with the mesh dependent norms introduced in Section 3. These examples are all mixed methods for the biharmonic problem. The error estimates in the standard norms that are obtained in the present paper and those obtained in [12], using different techniques, are the same.

Throughout this paper we will use the Sobolev spaces \(H^m = H^m(\Omega) \), where \(\Omega \) is a convex polygon in the plane and \(m \) is a nonnegative integer. On these spaces we have the seminorms and norms

\[
|u|_m = |u|_{m, \Omega} = \left(\sum_{|\alpha| = m} \int_{\Omega} |D^\alpha u|^2 \, dx \right)^{1/2},
\]

and

\[
\|u\|_m = \|u\|_{m, \Omega} = \left(\sum_{|\alpha| < m} \int_{\Omega} |D^\alpha u|^2 \, dx \right)^{1/2}.
\]

\(H_0^m(\Omega) \) denotes the subspace of \(H^m(\Omega) \) of functions vanishing together with their first \(m - 1 \) normal derivatives on \(\Gamma = \partial \Omega \). We also use the spaces \(H^{-m}(\Omega) = (H_0^m(\Omega))^\prime \) (the dual space of \(H_0^m(\Omega) \)) with the norm on \(H^{-m}(\Omega) \) taken to be the usual dual norm.

2. Abstract Convergence Results. In this section we review certain results on the approximate solution of saddle-point problems.

Let \(V_h \) and \(W_h \) be real Hilbert spaces (indexed by the parameter \(h \), where \(0 < h < 1 \)) with norms \(\|\cdot\|_{V_h} \) and \(\|\cdot\|_{W_h} \), respectively, and let \(a_h(\cdot, \cdot) \) and \(b_h(\cdot, \cdot) \) be bilinear forms on \(V_h \times V_h \) and \(V_h \times W_h \), respectively. We suppose

\[
(2.1) \quad |a_h(u, v)| \leq K_1 \|u\|_{V_h} \|v\|_{V_h} \quad \forall u, v \in V_h,
\]
where K_1 and K_2 are constants that do not depend on h.

We consider the following problem, referred to as problem P:

Given $f \in V_h'$ and $g \in W_h'$, find $(u, \psi) \in V_h \times W_h$ satisfying

$$a_h(u, v) + b_h(v, \psi) = (f, v) \quad \forall v \in V_h,$$

$$b_h(u, \varphi) = (g, \varphi) \quad \forall \varphi \in W_h,$$

where (\cdot, \cdot) denotes the pairing between V_h and its dual space V_h', or between W_h and W_h'.

We shall consider this problem for a subclass of data, i.e., for $(f, g) \in D$, where D is a subclass of $V_h' \times W_h'$. We assume that P has a unique solution for all $(f, g) \in D$.

We are interested in the approximate solution of P. Toward this end we suppose we are given finite-dimensional spaces $V_n \subset V_h$ and $W_n \subset W_h$, $0 < h < 1$, and consider the following problem, referred to as problem P_n:

Given $(f, g) \in D$, find $(u_h, \psi_h) \in V_n \times W_n$ satisfying

$$a_n(u_h, v) + b_n(v, \psi_h) = (f, v) \quad \forall v \in V_n,$$

$$b_n(u_h, \varphi) = (g, \varphi) \quad \forall \varphi \in W_n.$$

We now regard u_h as an approximation to u and ψ_h as an approximation to ψ.

Regarding problem P_n, we suppose

$$\sup_{u \in Z_h} \frac{|a_n(u, v)|}{\|v\|_{V_h}} \geq \gamma_0 \|u\|_{V_h} \quad \forall u \in Z_h \text{ and } \forall h,$$

where $\gamma_0 > 0$ is independent of h, and $Z_h = \{v \in V_h : b_h(v, \varphi) = 0 \forall \varphi \in W_h\}$, and

$$\sup_{v \in V_h} \frac{|b_n(v, \varphi)|}{\|v\|_{V_h}} \geq k_0 \|\varphi\|_{W_h} \quad \forall \varphi \in W_h \text{ and } \forall h,$$

where $k_0 > 0$ is independent of h. We now state the fundamental estimate for the errors $u - u_h$ and $\psi - \psi_h$.

Theorem 1 (Brezzi [5]). Suppose (2.1), (2.2), (2.5), and (2.6) are satisfied. Then problem P_n has a unique solution (u_h, ψ_h) for each h, and there is a constant C, independent of h, such that

$$\|u - u_h\|_{V_h} + \|\psi - \psi_h\|_{W_h} \leq C \left(\inf_{\chi \in V_h} \|u - \chi\|_{V_h} + \inf_{\eta \in W_h} \|\psi - \eta\|_{W_h} \right) \quad \forall h.$$

(2.5)—(2.6) is referred to as the stability condition for this approximation method.

In many applications of Theorem 1 the spaces V_h and W_h and the forms a_h and b_h do not depend on h, i.e., $V_h = V$ and $W_h = W$ are fixed Hilbert spaces and $a_h = a$ and $b_h = b$ are fixed bilinear forms and $V \times V$ and $V \times W$. The space V_h and W_h, typically, are spaces of piecewise polynomials with respect to a triangulation T_h of some domain by triangles of size less than or equal to h and, of course, depend on h.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In the applications in this paper, both the spaces V_h, W_h and V, W depend on h, i.e., are mesh dependent; the constants K_1, K_2, γ_0, and k_0, however, will be independent of h; cf. [2, Chapter 7]. In these applications the solution (u, ψ) of (2.3) is independent of h and lies in $V_h \times W_h$ for all h. Thus the estimate (2.7) yields convergence estimates for $u - u_h$ and $\psi - \psi_h$, provided the families $\{V_h\}$ and $\{W_h\}$ satisfy an approximability assumption. For typical finite element applications this would involve the assumption that $\inf_{\Omega} \|u - \chi\|_{V_h}$ and $\inf_{\Omega} \|\psi - \eta\|_{W_h}$ tend to zero as h tends to zero.

3. Mesh Dependent Norms and Spaces. In this section we describe the mesh dependent norms and spaces we shall use in the paper. Let Ω be a convex polygon in the plane. For $0 < h < 1$, we let T_h be a triangulation of Ω by triangles T of diameter less than or equal to h. We assume the family of triangulations $\{T_h\}$ satisfies the minimal angle condition, i.e., there is a constant σ such that

$$\max_{T \in T_h} \frac{h_T}{\rho_T} \leq \sigma \quad \forall h, \quad (3.1)$$

where h_T is the diameter of T and ρ_T is the diameter of the largest circle contained in T, and is quasi-uniform, i.e., there is a constant $\tau > 0$ such that

$$\frac{h}{h_T} \leq \tau \quad \forall T \in T_h \quad \text{and} \quad \forall h \quad (3.2)$$

Let $\Gamma_h = \bigcup_{T \in T_h} \partial T$. We define

$$H^2_h = \{ u \in H^1(\Omega): u|_T \in H^2(T) \quad \forall T \in T_h \}$$

and on H^2_h define the norm

$$\|u\|_{2,h}^2 = \sum_{T \in T_h} \|u\|_{2,T}^2 + h^{-1} \int_{\Gamma_h} \left| \frac{\partial u}{\partial \nu} \right|^2 \, ds,$$

where, if $T' = \partial T \cap \partial T^2$ is an interior edge of the triangulation T_h, we set

$$\frac{\partial u}{\partial \nu} \bigg|_{T'} = \frac{\partial u}{\partial \nu^1} + \frac{\partial u}{\partial \nu^2},$$

where ν^j is the unit normal to T' exterior to T^j, and if T' is a boundary edge of T_h, we set

$$\frac{\partial u}{\partial \nu} \bigg|_{T'} = \frac{\partial u}{\partial \nu}.$$

On $H^1(\Omega)$ we define

$$\|u\|_{0,h}^2 = \int_\Omega |u|^2 \, dx + h \int_{\Gamma_h} |u|^2 \, ds$$

and then define H^0_h to be the completion of $H^1(\Omega)$ with respect to $\| \cdot \|_{0,h}$. H^0_h can be identified with $L^2(\Omega) \oplus L^2(\Gamma_h)$.

We note that norms similar to $\| \cdot \|_{0,h}$ and $\| \cdot \|_{2,h}$ have been used in a different manner in Douglas-Dupont [11] and Thomas [26].
For $k \geq 1$ a fixed integer, we define

$$S_h = \{ u \in C^0(\Omega) : u|_T \in P_k \text{ } \forall T \in T_h \}$$

where P_k is the space of polynomials of degree k or less in the variable x_1 and x_2. It is clear that S_h is contained in H^0_0 and H^2_0.

We now prove several lemmas that are fundamental to the analysis of this paper. These proofs are all closely related to the ideas used in the proof of the Bramble-Hilbert lemma [4]. Prior to stating the first of these lemmas, we describe the notation we will use and state some well-known results that will be used in the proofs.

Let T be an arbitrary triangle and let \hat{T} be the reference triangle with vertices $(0, 0), (1, 0)$, and $(0, 1)$. Then there is an invertible affine mapping $F_T(\hat{x}) = B_T \hat{x} + b_T = F(x) = Bx + b$ such that $T = F_T(\hat{T})$. This mapping leads to the correspondence $\hat{x} \in \hat{T} \leftrightarrow x = F_T(\hat{x}) \in T$ between points in \hat{T} and points in T and the correspondence $(\hat{u} : \hat{T} \rightarrow R) \leftrightarrow (u = \hat{u} \circ F^{-1}_T : T \rightarrow R)$ between functions defined on \hat{T} and functions defined on T. Note that $\hat{u}(\hat{x}) = u(x)$.

It is easily seen that

$$(\nabla x u)(x) = (B^{-1})^t(\nabla \hat{x} \hat{v})(F^{-1}(x)).$$

If $\nu = \nu(x)$ denotes the outward unit normal to ∂T at x and $\hat{\nu} = \hat{\nu}(\hat{x})$ is the outward unit normal to $\partial \hat{T}$, then

$$(3.5) \nu(x) = (B^{-1})^t(\hat{\nu}(\hat{x}))B^t\nu(x),$$

where t denotes transpose. Let the sides of T be denoted by $T_i, i = 1, 2, 3$. $|T|$ denotes the area of T and $|T_i|$ denotes the length of T_i. The seminorms $|u|_{l,T}$ and $|\hat{u}|_{l,\hat{T}}$ are related by

$$(3.6) |\hat{u}|_{l,\hat{T}} \leq |\det B|^{-1/2} \|B\|^{l/2} |u|_{l,T}$$

and

$$(3.7) |u|_{l,T} \leq |\det B|^{1/2} |B^{-1}|^{l/2} |\hat{u}|_{l,\hat{T}},$$

where $\|B\|$ is the norm of B induced by the Euclidean vector norm; cf. [8, Theorem 3.1.2]. We will also use the estimates

$$(3.8) \|B\| \leq \frac{h_T}{\rho_T}, \quad \|B^{-1}\| \leq \frac{h_T}{\rho_T};$$

cf. [8, Theorem 3.1.3]. We also note that $|\det B| = |T|/|\hat{T}|$. Finally we remark that there is a constant $C = C(\hat{T})$ such that

$$(3.9) \inf_{\hat{u} \in P_k} \|\hat{u} + p\|_{k+1,\hat{T}} \leq C|\hat{u}|_{k+1,\hat{T}} \text{ } \forall \hat{u} \in H^{k+1}(\hat{T});$$

cf. [8, Theorem 3.1.1].

Lemma 1. There is a constant C such that

$$\|u\|_{0,h} \leq C\|u\|_0 \text{ } \forall u \in S_h.$$
Proof. It is sufficient to show that
\[h \int_{\Gamma_h} |u|^2 \, ds \leq C \|u\|_{0, T}^2 \quad \forall u \in S_h. \]

Now \((\int_{\hat{T}} \hat{|u}|^2 \, d\hat{x})^{1/2} \) and \((\int_{\hat{T}} |\hat{u}|^2 \, d\hat{x} + \int_{\partial \hat{T}} |\hat{u}|^2 \, d\hat{s})^{1/2} \) are both norms on the finite-dimensional space \(P_k(\hat{T}) = \{ p|_{\hat{T}} : p \in P_k \} \) and hence there is a constant \(C(\hat{T}) \) such that
\[\int_{\partial \hat{T}} |\hat{u}|^2 \, d\hat{s} \leq C(\hat{T}) \int_{\hat{T}} |\hat{u}| \, d\hat{x} \quad \forall \hat{u} \in P_k(\hat{T}). \]

Let \(T \in T_h \) and suppose \(T \) is the image of \(T \) under the mapping \(F(x) = Bx + b \). Then, using (3.1), (3.2), and (3.6), we see that for any \(u \in P_k \) we have
\[
\int_{\partial T} |u|^2 \, ds = \sum_{i=1}^3 \int_{T_i} |u|^2 \, ds \leq \sum_i \int_{T_i} |T_i| |\hat{u}|^2 \, d\hat{x}
\leq C(\hat{T}) \max_i |T_i| \int_{\hat{T}} |\hat{u}|^2 \, d\hat{x} \leq C(\hat{T}) \max_i |T_i| \det B^{-1} \int_{T_i} |u|^2 \, dx
\leq C(\hat{T}) \max_i |T_i| \left(\frac{h_T}{\rho_T} \right)^2 \left(\frac{1}{h_T} \right) \|u\|_{0, T}^2 \leq C(\hat{T}) \sigma \|u\|_{0, T}^2.
\]

Therefore
\[h \int_{\Gamma_h} |u|^2 \, ds \leq h \sum_{T \in T_h} \int_{\partial T} |u|^2 \, ds \leq C(\hat{T}) \sigma \sum_{T \in T_h} \|u\|_{0, T}^2 \leq C(\hat{T}) \sigma \|u\|_{0, \Omega}^2 \]
for all \(u \in S_h \).

Lemma 2. There is a constant \(C \) such that
\[\|u\|_{2, h} \leq C \|u\|_{1, \Omega} \quad \forall u \in P_k. \]

Proof. Since \(\{ T_h \} \) is quasi-uniform, it is well known that
\[\sum_{T \in T_h} \|u\|_{2, T}^2 \leq C h^{-2} \|u\|_{1, \Omega}^2 \quad \forall u \in P_k. \]
Thus it is sufficient to show that
\[h^{-1} \int_{\Gamma_h} \left| \frac{\partial u}{\partial v} \right|^2 \, ds \leq C h^{-2} \|u\|_{1, \Omega}^2 \quad \forall u \in P_k. \]

\((\int_{\hat{T}} |\hat{u}|^2 \, d\hat{x} + \int_{\partial \hat{T}} |\nabla_{\hat{x}} \hat{u}|^2 \, d\hat{s})^{1/2} \) and \(\|\hat{u}\|_{1, \hat{T}} \) are both norms on the finite-dimensional space \(P_k(\hat{T}) \) and hence there is a constant \(C(\hat{T}) \) such that
Clearly, $E(\hat{u} + p) = E(\hat{u}) \forall p \in P_0$. Thus

$$E(\hat{u}) = E(\hat{u} + p) \leq C(\hat{T})\|\hat{u} + p\|_{1, \hat{T}}^2 \quad \forall p \in P_0$$

and hence, using (3.9), we have

$$E(\hat{u}) \leq C(\hat{T}) \inf_{p \in P_0} \|\hat{u} + p\|_{1, \hat{T}}^2 \leq C(\hat{T})|\hat{u}|_{1, \hat{T}}^2.$$

Now let $T \in T_h$ and assume T is the image of \hat{T} under the mapping $F(x) = Bx + b$. Then, using (3.1), (3.2), (3.4), (3.6), and (3.8), we see that for any $u \in P_k$ we have

$$\int_{\partial T} \left| \frac{\partial}{\partial \nu} \right|^2 ds = \sum_i \int_{T_i} |(\nabla_{\hat{T}} u)(x)|^2 \nu(x)^2 ds$$

$$\leq \sum_i \int_{T_i} |(B^{-1})^t(\nabla_{\hat{T}} \hat{u})(F^{-1}(x))|^2 ds$$

$$\leq |B^{-1}|^2 \max_i |T_i| \int_{\partial \hat{T}} |\nabla_{\hat{T}} \hat{u}|^2 ds \leq C(\hat{T})|B^{-1}|^2 \max_i |T_i| |\hat{u}|_{1, \hat{T}}^2$$

$$\leq C(\hat{T})|B^{-1}|^2 \max_i |T_i| |\det B^{-1}| |B||u|_{1, T}^2$$

$$\leq C(\hat{T})\left(\frac{h_{\hat{T}}}{\rho_{\hat{T}}}\right)^2 \left(\frac{h_T}{\rho_T}\right)^2 h_T |T| |u|_{1, T}^2$$

$$\leq C(\hat{T})\left(\frac{h_{\hat{T}}}{\rho_{\hat{T}}}\right)^2 \left(\frac{h_T}{\rho_T}\right)^4 \frac{4|\hat{T}|}{\pi} \frac{1}{h_T} |u|_{1, T}^2$$

$$\leq C(\hat{T})\left(\frac{h_{\hat{T}}}{\rho_{\hat{T}}}\right)^2 \sigma^4 T \frac{4|\hat{T}|}{\pi} h^{-1} |u|_{1, T}^2.$$

Therefore, we obtain

$$h^{-1} \int_{T_h} \left| J \frac{\partial u}{\partial \nu} \right|^2 ds \leq \sum_{T \in T_h} h^{-1} \int_{\partial T} \left| \frac{\partial u}{\partial \nu} \right|^2 ds$$

$$\leq C(\hat{T})\sigma^4 T \sum_{T \in T_h} h^{-2} |u|_{1, T}^2 \leq C(\hat{T})\sigma^4 T h^{-2} |u|_{1, T}^2.$$

This completes the proof.

Lemma 3. There is a constant C such that

$$\inf_{\chi \in S_h} \|u - \chi\|_{0, h} \leq Ch^l |u|_{l, \Omega}$$

for all $u \in H^r(\Omega)$ and all h, where $1 \leq r$ and $1 \leq l \leq \min(r, k + 1)$.

Proof. We define two interpolation operators that will be used in the proof. For $u \in H^2(T)$, let $I_T u \in P_k$ be defined by
\[\int_T (u - I_T u) f \, dx = 0 \quad \forall f \in P_{k-3}, \]
\[\int_{T'} (u - I_T u) f \, dx = 0 \quad \forall f \in P_{k-2} \text{ and } \forall \text{ sides } T' \text{ of } T, \]

and
\[u(a) - (I_T u)(a) = 0 \quad \forall \text{ vertices } a \text{ of } T. \]

Then, for \(u \in H^2(\Omega) \), we let \(I_h u \in S_h \) be defined by
\[
(I_h u)|_T = I_T (u|_T).
\]

For \(u \in H^1(\Omega) \), we define the interpolant in a different manner. Here we consider only the case \(k = 1 \). Let the vertices of \(T_h \) be denoted by \(z_1, \ldots, z_m \) and let \(w_1, \ldots, w_m \) be the basis for \(S_h \) defined by \(w_j(z_j) = \delta_{ij} \). Set \(S_j = (\supp w_j) \cap \Omega \) and let \(|S_j| \) be the area of \(S_j \). Now, following Clément [10], we define \(\widetilde{I}_h u \) by
\[
\widetilde{I}_h u = \sum_{j=1}^m \frac{\int_{S_j} u \, dx}{|S_j|} w_j.
\]

We first consider the case \(r \geq 2 \) and \(l \geq 2 \). In this case we obtain the desired result by estimating \(\|u - I_h u\|_{0,h} \). By the standard approximability results for \(S_h \), we have
\[
\int_{S_T} |u - I_h u|^2 \, dx \leq C h^2 |u|_{l,T}^2.
\]

Thus it is sufficient to show that
\[
\int_{\Gamma_h} |u - I_h u|^2 \, ds \leq C h^{2l-1} |u|_{l,T}^2.
\]

Suppose \(u \in H^l(\hat{T}) \) and set \(E(\hat{u}) = \int_{\hat{T}} |\hat{u} - I_{\hat{T}} \hat{u}|^2 \, d\hat{s} \). By the trace theorem and the Sobolev imbedding theorem we have
\[
E(\hat{u}) \leq C(\hat{T}) \|\hat{u}\|_{l,\hat{T}}^2,
\]
and since \(E(\hat{u} + p) = E(\hat{u}) \quad \forall p \in P_{l-1} \), we thus have
\[
E(\hat{u}) \leq C(\hat{T}) \inf_{p \in P_{l-1}} \|\hat{u} + p\|_{l,\hat{T}}^2 \leq C(\hat{T}) |u|_{l,\hat{T}}^2.
\]

Now let \(T \in T_h \) be the image of \(\hat{T} \) under the mapping \(F(\hat{x}) = B\hat{x} + b \). Then
\[
\int_{\partial T} |u - I_T u|^2 \, ds \leq \sum_i \int_{\partial T_i} |\hat{u} - I_{\hat{T}} \hat{u}|^2 |T_i| \, d\hat{s}
\]
\[
\leq \max_i |T_i||\hat{u} - I_{\hat{T}} \hat{u}|^2 \leq \max_i |T_i||C(\hat{T})| |\hat{u}|_{l,\hat{T}}^2
\]
\[
\leq \max_i |T_i||C(\hat{T})| \det B|^{-1} \|u\|_{l,T}^2
\]
\[
\leq C(\hat{T}) |T| \frac{4h_T}{\pi \rho_T^2} \left(\frac{h_T}{\rho_T} \right)^{2l} |u|_{l,T}^2
\]
\[
\leq \frac{C(\hat{T})}{\pi \rho_T^{2l}} h_T^{2l-1} |u|_{l,T}^2.
\]
Therefore

\[\int_{\Gamma_h} |u - I_h u|^2 \, ds \leq \sum_{T \in \Gamma_h} \int_{\delta T} |u - I_T u|^2 \, ds \]

\[\leq C(\hat{T}) \sigma^2 h^{2l-1} \sum_{T \in \Gamma_h} |u|^2_{l,T} = C(\hat{T}) \sigma^2 h^{2l-1} |u|^2_{l,\Omega}. \]

This completes the proof for the case \(r, l \geq 2 \).

For the case \(r \geq 2 \) and \(l = 1 \) or \(r = l = 1 \), we estimate \(\|u - \tilde{I}_h u\|_{0,h} \). Clément [10] has shown that

\[\|u - \tilde{I}_h u\|_0 \leq C h |u|_1. \]

By a slight modification of the proof in [9], we obtain

\[\left(h \int_{\Gamma_h} |u - \tilde{I}_h u|^2 \, ds \right)^{1/2} \leq Ch |u|_1. \]

The desired result now follows.

Lemma 4. There is a constant \(C \) such that

\[\inf_{\chi \in S_h \cap H^1_0} \|u - \chi\|_{2,h} \leq Ch^{l-2} |u|_{l,\Omega} \]

for all \(u \in H^r(\Omega) \cap H^1_0(\Omega) \) and all \(h \), where \(2 \leq r \) and \(2 \leq l \leq \min(r, k + 1) \).

Proof. Let \(I_h \) be defined as in the proof of Lemma 3. Note that \(I_h u \in S_h \cap H^1_0 \) if \(u \in H^r \cap H^1_0 \). Since, by standard approximability results, we have

\[\sum_T \|u - I_h u\|^2_{2,T} \leq C h^{2l-4} |u|^2_{l,\Omega}, \]

it is sufficient to show that

\[\int_{\Gamma_h} \left| J \frac{\partial(u - I_h u)}{\partial \nu} \right|^2 \, ds \leq C h^{2l-3} |u|^2_{l,\Omega}. \]

We next observe that

\[\int_{\partial T} |\nabla \tilde{u} (u - \tilde{I}_T \tilde{u})|^2 \, ds \leq C(\hat{T}) |\tilde{u}|^2_{l,T} \quad \forall \tilde{u} \in H^l(\hat{T}). \]

Now let \(T \in \Gamma_h \) be the image of \(\hat{T} \) under the mapping \(F(\hat{x}) = B\hat{x} + b \). Then

\[\int_{\partial T} \left| \frac{\partial}{\partial \nu} (u - I_T u) \right|^2 \, ds = \sum_i \int_{T_i} |(\nabla_x (u - I_T u)) \cdot \nu(x)|^2 \, ds \]

\[= \sum_i \int_{T_i} |(B^{-1})^T \nabla_x (\hat{u} - \tilde{I}_T \hat{u})|^2 \, ds \]

\[\leq \sum_i \int_{T_i} |(B^{-1})^T \nabla_x (\hat{u} - \tilde{I}_T \hat{u}) (x)^2 |T_i| \, ds \]

\[\leq |B^{-1}|^2 \max_i |T_i| \int_{\partial \hat{T}} |\nabla_x (\hat{u} - \tilde{I}_T \hat{u})|^2 \, ds \leq C(\hat{T}) |B^{-1}|^2 \max_i |T_i| |\tilde{u}|^2_{l,T} \]

\[\leq C(\hat{T}) \frac{|h_T|}{\rho_T} \frac{h_T}{\rho_T} \frac{|\tilde{T}|}{|T|} |u|^2_{l,T} |h_T|^2 \leq \frac{C(\hat{T}) |4 h_T^2 |}{\pi \rho_T^2} \sigma^4 h_T^{2l-3} |u|^2_{l,\Omega}. \]
Therefore
\[\int_{\Gamma_h} \left| \int J \frac{\partial(u - u_T)}{\partial v} \right|^2 ds \leq \sum_{T \in \mathcal{T}_h} \int_{\partial T} \frac{\partial}{\partial v} (u - I_T u)^2 ds \leq C(\mathcal{T}) \theta^4 h^{2\ell-3} |u|_{l, \Omega}^2, \]
which completes the proof.

4. Applications. In this section we analyze three mixed methods.

(a) Ciarlet-Raviart Method. Consider the biharmonic problem
\[\begin{cases} \Delta^2 \psi = g & \text{in } \Omega, \\ \psi = \frac{\partial \psi}{\partial \nu} = 0 & \text{on } \Gamma = \partial \Omega, \end{cases} \tag{4.1} \]
where \(\Omega \) is a convex polygon in the plane and \(g \) is a given function. If \(g \in H^{-2}(\Omega) \), then there is a unique solution \(\psi \in H_0^2(\Omega) \) of (4.1). In addition, the following regularity result is known for this problem: If \(g \in H^{-1}(\Omega) \), then \(\psi \in H^3(\Omega) \cap H_0^2(\Omega) \) and there is a constant \(C \) such that
\[\| \psi \|_3 \leq C \| g \|_{-1} \quad \forall g \in H^{-1}(\Omega). \tag{4.2} \]
Using the well-known correspondence between the biharmonic problem and the Stokes problem, this regularity result can be deduced from the regularity result for the Stokes problem proved in [18]. We assume \(g \in H^{-1}(\Omega) \) throughout this section.

We now seek an approximation to the solution \(\psi \) of (4.1) by a mixed method, i.e., we introduce an auxiliary variable, \(u \equiv -\Delta \psi \) for the method of this subsection, write (4.1) as a second-order system, cast this system into variational form, and then consider the Ritz-Galerkin method corresponding to this variational formulation.

Thus we let \(u \equiv -\Delta \psi \) and write (4.1) as
\[\begin{cases} \Delta u = -g, \\ \Delta \psi + u = 0 & \text{in } \Omega, \\ \psi = \frac{\partial \psi}{\partial \nu} = 0 & \text{on } \Gamma. \end{cases} \tag{4.3} \]
The desired variational formulation of (4.3) is obtained by multiplying the 1st equation in (4.3) by \(\varphi \in H_0^2 \cap H_0^1 \), the 2nd equation by \(v \in H_0^1 \), integrating the resulting equations over \(\Omega \), and integrating the first one by parts over each \(T \in \mathcal{T}_h \). By means of this process we arrive at the following problem:

Given \(g \in H^{-1}(\Omega) \), find \((u, \psi) \in H_0^1 \times (H_0^2 \cap H_0^1) \) satisfying
\[\begin{cases} \int_{\Omega} uv \, dx - \sum_{T \in \mathcal{T}_h} \int_{\partial T} v \Delta \psi \, dx - \int_{\Gamma_h} v \left(J \frac{\partial \psi}{\partial v} \right) ds = 0 \quad \forall v \in H_0^1, \\ \sum_{T \in \mathcal{T}_h} \int_{\Gamma_h} u \Delta \varphi \, ds - \int_{\Gamma_h} u \left(J \frac{\partial \varphi}{\partial v} \right) ds = -\int_{\Omega} g \varphi \, dx \quad \forall \varphi \in H_0^2 \cap H_0^1. \tag{4.4} \end{cases} \]
Using the regularity result (4.2), one can easily show that if \(\psi \) is the solution of (4.1) and \(u \equiv -\Delta \psi \), then \((u, \psi) \) is a solution of (4.4), and if \((u, \psi) \) is a solution of (4.4), then \(\psi \) is the solution of (4.1) and \(u = -\Delta \psi \). (4.4) is an example of problem \(P \) in Section 2 with \(V_h = H^0 \), \(\| \cdot \|_{V_h} = \| \cdot \|_{0,h} \), \(W_h = H^1_h \cap H^1_0 \), \(\| \cdot \|_{W_h} = \| \cdot \|_{2,h} \), \(a_h(u, v) = \int_\Omega uv \, dx \), and

\[
b_h(u, \varphi) = \sum_{T \in T_h} \int_T u \Delta \varphi \, dx - \int_{\Gamma_h} u \left(J \frac{\partial \varphi}{\partial n} \right) \, ds
\]

(and with \(g \) replaced by \(-g\)). Here the subclass of data for which (4.4) is uniquely solvable is \(D = 0 \times H^{-1}(\Omega) \).

As pointed out above, \(H^0 \) can be identified with \(L^2(\Omega) \oplus L^2(\Gamma_h) \). Under this identification, \(H^1(\Omega) \) is considered a linear manifold in \(H^0 \) through the mapping

\[
H^1(\Omega) \ni u \mapsto (u, u|_{\Gamma_h}) \in L^2(\Omega) \oplus L^2(\Gamma_h) = H^0.
\]

Thus an element \(u = (\tilde{u}, \tilde{\varphi}) \in L^2(\Omega) \oplus L^2(\Gamma_h) \) is considered to be in \(H^1(\Omega) \) if \(\tilde{u} \in H^1(\Omega) \) and \(u|_{\Gamma_h} = \tilde{u} \). To be completely precise, \(b_h \) should be defined by

\[
b_h(u, \varphi) = \sum_{T \in T_h} \int_T \tilde{u} \Delta \varphi \, dx - \int_{\Gamma_h} \tilde{u} \left(J \frac{\partial \varphi}{\partial n} \right) \, ds,
\]

for \(u = (\tilde{u}, \tilde{\varphi}) \in H^0 = L^2(\Omega) \oplus L^2(\Gamma_h) \) and \(\varphi \in H^2 \). Note that

\[
(4.5) \quad b_h(u, \varphi) = -\int_\Omega \nabla u \cdot \nabla \varphi \, dx
\]

for \(u \in H^1(\Omega) \) and \(\varphi \in H^2 \). We further note that it is immediate that (2.1) and (2.2) are satisfied with constants that do not depend on \(h \).

For finite-dimensional spaces we choose \(V_h = S_h \) and \(W_h = S_h \cap H^1_0(\Omega) \), where \(S_h \) is defined in (3.3). Problem \(P_h \) thus has the form:

Given \(g \in H^{-1}(\Omega) \), find \((u_h, \psi_h) \in V_h \times W_h \) satisfying

\[
(4.6) \begin{cases}
\int_\Omega u_h v \, dx + \sum_{T \in T_h} \int_T v \Delta \psi_h \, dx - \int_{\Gamma_h} v \left(J \frac{\partial \psi_h}{\partial n} \right) \, dx = 0 & \forall v \in V_h, \\
\sum_{T \in T_h} \int_T u_h \Delta \varphi \, dx - \int_{\Gamma_h} u_h \left(J \frac{\partial \varphi}{\partial n} \right) \, ds = -\int_\Omega g \varphi \, dx & \forall \varphi \in W_h.
\end{cases}
\]

Using (4.5), one easily sees that the approximation procedure determined by (4.6) is the same as that considered by Glowinski [14] and Mercier [19] and further developed by Ciarlet-Raviart [9]. Note that this method yields direct approximations to \(\psi \) and to \(u = -\Delta \psi \) (the stream function and vorticity in hydrodynamical problems).

We have already observed that (2.1) and (2.2) are satisfied. In order to apply Theorem 1, we must check the stability condition (2.5)–(2.6).
Theorem 2. There is a constant $\gamma_0 > 0$, independent of h, such that

$$\sup_{\mathbf{v} \in Z_h} \left| \int_{\Omega} \mathbf{u} \cdot \nabla \phi \, dx \right| \geq \gamma_0 \|\mathbf{u}\|_{0,h} \quad \forall \mathbf{u} \in Z_h,$$

i.e., (2.5) is satisfied.

Proof. Using Lemma 1, we have

$$\sup_{\mathbf{v} \in Z_h} \left| \int_{\Omega} \mathbf{u} \cdot \nabla \phi \, dx \right| \geq \sup_{\mathbf{v} \in Z_h} \frac{\left| \int_{\Omega} \mathbf{u} \cdot \nabla \phi \, dx \right|}{\|\mathbf{v}\|_0}$$

$$= C^{-1} \|\mathbf{u}\|_0 \geq C^{-2} \|\mathbf{u}\|_{0,h} \quad \forall \mathbf{u} \in Z_h,$$

where C is independent of h. Thus (2.5) holds with $\gamma_0 = C^{-2}$.

Now we consider (2.6). Let $S_h \equiv \{ \mathbf{v} \in S_h : \int_{\Omega} \mathbf{v} \cdot \phi \, dx = 0 \}$.

Lemma 5. There is a constant $C_1 > 0$, independent of h, such that

$$\inf_{\phi \in S_h} \sup_{\mathbf{v} \in S_h} \frac{\int_{\Omega} \nabla \phi \cdot \nabla \phi \, dx}{\|\mathbf{v}\|_0, \|\phi\|_{2,h}} \geq C_1 \quad \forall h.$$

Proof. We first note that

$$\inf_{\phi \in S_h} \sup_{\mathbf{v} \in S_h} \frac{\int_{\Omega} \nabla \phi \cdot \nabla \phi \, dx}{\|\mathbf{v}\|_0, \|\phi\|_{2,h}} = \inf_{\phi \in S_h} \sup_{\mathbf{v} \in S_h} \frac{\int_{\Omega} \nabla \phi \cdot \nabla \phi \, dx}{\|\mathbf{v}\|_0, \|\phi\|_{2,h}}.$$

This is a consequence of the fact that an operator and its adjoint have equal norms.

Given $\mathbf{v} \in S_h$, we choose ϕ to satisfy

$$\begin{cases} \phi \in S_h, \\ \int_{\Omega} \nabla \phi \cdot \nabla \xi \, dx = \int_{\Omega} \mathbf{v} \xi \, dx \quad \forall \xi \in S_h. \end{cases}$$

Letting $\xi = \mathbf{v}$ and using Lemma 1, we obtain

$$\int_{\Omega} \nabla \phi \cdot \nabla \phi \, dx = \int_{\Omega} \mathbf{v}^2 \, dx \geq C_2 \|\mathbf{v}\|_{0,h}^2,$$

where $C_2 > 0$ is independent of h.

Now let $\tilde{\phi}$ be defined by

$$\begin{cases} \tilde{\phi} \in \tilde{H}^1(\Omega) \equiv \{ u \in H^1(\Omega) : \int_{\Omega} u \, dx = 0 \}, \\ \int_{\Omega} \nabla \tilde{\phi} \cdot \nabla \xi \, dx = \int_{\Omega} \mathbf{v} \xi \, dx \quad \forall \xi \in \tilde{H}^1(\Omega). \end{cases}$$

Then $\partial \tilde{\phi}/\partial \nu = 0$ on Γ and, since Ω is convex,

$$\|\tilde{\phi}\|_2 \leq C \|\mathbf{v}\|_0.$$
\(\varphi \) is the Neumann projection of \(\overline{\varphi} \) into \(S_h \) and it is well known that

\[
\| \varphi - \overline{\varphi} \|_1 \leq Ch \| \varphi \|_2.
\]

Let \(\hat{\varphi} \) be the piecewise linear interpolant of \(\varphi \).

Since \(\overline{\varphi} \in H^2(\Omega) \) and \(\partial \overline{\varphi} / \partial v = 0 \) on \(\Gamma \), we see from the definition of \(\| \cdot \|_{2,h} \)
and from (4.9) that

\[
\| \hat{\varphi} \|_{2,h} = \| \varphi \|_2 \leq C \| v \|_0.
\]

From Lemma 4, with \(k = 1 \) and \(r = 2 \), and (4.10), we have

\[
\| \hat{\varphi} - \varphi \|_{2,h} \leq C \| \varphi \|_2 \leq C \| v \|_0.
\]

Using Lemma 2, (4.9), (4.10), and standard approximability results, we find that

\[
\| \varphi - \overline{\varphi} \|_{2,h} \leq C h^{-1} \| \varphi - \hat{\varphi} \|_1 \leq C h^{-1} (\| \varphi - \hat{\varphi} \|_1 + \| \hat{\varphi} - \overline{\varphi} \|_1)
\leq C h^{-1} (h \| \hat{\varphi} \|_2 + h \| \varphi \|_2) \leq C \| v \|_0.
\]

Now, using (4.11)–(4.13), we have

\[
\| \varphi \|_{2,h} \leq \| \varphi - \hat{\varphi} \|_{2,h} + \| \hat{\varphi} - \overline{\varphi} \|_{2,h} + \| \overline{\varphi} \|_{2,h} \leq C_3 \| v \|_0 \leq C_3 \| v \|_{0,h},
\]

where \(C_3 \) is independent of \(h \).

Combining (4.8) and (4.14), we get

\[
\inf_{v \in S_h} \sup_{\varphi \in S_h} \left| \int_{\Omega} \nabla v \cdot \nabla \varphi \, dx \right| \geq \frac{C_2}{C_3} \geq C_1 > 0.
\]

The desired result now follows from (4.7) and (4.15).

Theorem 3. There is a constant \(k_0 > 0 \), independent of \(h \), such that

\[
\sup_{v \in V_h} \frac{|b_h(v, \varphi)|}{\| v \|_{0,h}} \geq k_0 \| \varphi \|_{2,h} \quad \forall \varphi \in W_h \text{ and } \forall h,
\]

i.e., (2.6) is satisfied.

Proof. Let \(\varphi \in W_h \) and set \(e = (1/|\Omega|) \int_{\Omega} \varphi \, dx \). Then \(|e| \leq C \| \varphi \|_0 \) and \(\tilde{\varphi} \equiv \varphi - e \in S_h \). By Lemma 5 there is a \(v_1 \in S_h \) such that

\[
b_h(v_1, \varphi) = b_h(v_1, \tilde{\varphi}) = -\int_{\Omega} \nabla v_1 \cdot \nabla \tilde{\varphi} \, dx \geq \| \tilde{\varphi} \|_{2,h}^2 \geq \| \varphi \|_{2,h}^2 - C_4 \| \varphi \|_0^2
\]

and

\[
\| v_1 \|_{0,h} \leq C \| \tilde{\varphi} \|_{2,h} \leq C_5 \| \varphi \|_{2,h}.
\]

We also know that

\[
b_h(\varphi, \varphi) = \int_{\Omega} |\nabla \varphi|^2 \, dx \geq C_6 \| \varphi \|_0^2
\]

and

\[
\| \varphi \|_{0,h} \leq C_7 \| \varphi \|_{2,h}.
\]
Now let \(u = v_1 - C_4 C_6^{-1} \varphi \). Then, using (4.17)–(4.20), we have

\[
(4.21) \quad b_h(u, \varphi) \geq \| \varphi \|_{2,h}^2
\]

and

\[
(4.22) \quad \| u \|_{0,h} \leq (C_5 + C_4 C_7 C_6^{-1}) \| \varphi \|_{2,h}.
\]

Combining (4.21) and (4.22), we have (4.16) with \(C = (C_5 + C_4 C_7 C_6^{-1})^{-1} \).

We are now ready to apply Theorem 1 to analyze the Ciarlet-Raviart method. We obtain

\[
\| u - u_h \|_{0,h} + \| \psi - \psi_h \|_{2,h} \leq C \left(\inf_{\chi \in V_h} \| u - \chi \|_{0,h} + \inf_{\eta \in W_h} \| \psi - \eta \|_{2,h} \right).
\]

Suppose \(\psi \in H^r(\Omega) \), \(r \geq 3 \), and suppose \(k \geq 2 \). Using Lemmas 3 and 4, we obtain

\[
(4.23) \quad \| u - u_h \|_{0,h} + \| \psi - \psi_h \|_{2,h} \leq Ch^{r-2} \| \psi \|_s,
\]

where \(s = \min(r, k + 1) \). From (4.23) we get

\[
(4.24) \quad \| u - u_h \|_0 \leq Ch^{r-2} \| \psi \|_s.
\]

In addition, (4.23) yields the estimates

\[
(4.25a) \quad \left(\int_{\Gamma_h} |u - u_h|^2 \, ds \right)^{1/2} \leq Ch^{r-5/2} \| \psi \|_s,
\]

\[
(4.25b) \quad \left(\sum_{T \in \mathcal{T}_h} \| \psi - \psi_h \|_{2,T}^2 \right)^{1/2} \leq Ch^{r-2} \| \psi \|_2,
\]

and

\[
(4.25c) \quad \left(\int_{\Gamma_h} \left| J \frac{\partial \psi_h}{\partial n} \right|^2 \, ds \right)^{1/2} \leq Ch^{r-3/2} \| \psi \|_2.
\]

We now derive an estimate for \(\| \psi - \psi_h \|_1 \) by means of the well-known duality argument. Given \(d \in H^{-1}(\Omega) \), let \(\theta \) be the solution of

\[
\begin{cases}
\Delta^2 \theta = d & \text{in } \Omega, \\
\theta = \partial \theta / \partial n = 0 & \text{on } \Gamma.
\end{cases}
\]

If we let \(w = -\Delta \theta \), then from (4.2) we have

\[
(4.26) \quad \| \theta \|_3 + \| w \|_1 \leq C \| d \|_{-1}.
\]

Also, from the discussion following Eqs. (4.4), we know that the pair \((w, \theta) \) satisfies

\[
(d, \varphi)_0 = -a_h(u, w) - b_h(w, \varphi) - b_h(u, \varphi) \quad \forall (v, \varphi) \in H^0_h \times (H^2_h \cap H^1_0).
\]

Setting \(v = u - u_h \) and \(\varphi = \psi - \psi_h \), using the exact equations (4.4) and the Ritz-Galerkin equations (4.6), we get

\[
(d, \psi - \psi_h)_0 = -a_h(u - u_h, w) - b_h(w, \psi - \psi_h) - b_h(u - u_h, \theta) \]

\[
= -a_h(u - u_h, w - z) - b_h(w - z, \psi - \psi_h) - b_h(u - u_h, \theta - \mu) \quad \forall (z, \mu) \in V_h \times W_h.
\]
Thus, using (2.1), (2.2), (4.26), and Lemmas 3 and 4, we get

\[
|\langle d, \psi_h - \psi \rangle| \leq C(\|u - u_h\|_{0,h} + \|\psi - \psi_h\|_{2,h}) \inf_{z \in V_h} \|w - z\|_{0,h} \\
+ \|u - u_h\|_{0,h} \inf_{\mu \in W_h} \|\theta - \mu\|_{2,h} \\
\leq Ch\|d\|_{-1}(\|u - u_h\|_{0,h} + \|\psi - \psi_h\|_{2,h}).
\]

(4.27)

Finally, combining (4.23) and (4.27), we have

\[
\|\psi - \psi_h\|_1 = \sup_{d \in H^{-1}(\Omega)} \frac{|\langle d, \psi - \psi_h \rangle|}{\|d\|_{-1}} \leq Ch^{s-1} \|\psi\|_s,
\]

(4.28)

where \(s = \min(r, k + 1)\).

Estimates (4.24) and (4.28) improve on those in Ciarlet-Raviart [9]. Scholz [23] obtained (4.24) under the assumption that \(\Gamma\) is smooth. (4.24) and (4.28) were also obtained by Falk-Osborn [12]. Note that the approach of this paper does not yield error estimates for the case \(k = 1\) for the method studied in this subsection (and also for the method of Subsection (b)); for this case the reader is referred to Scholz [24].

Using \(L_\omega\)-estimate techniques, Scholz [24] has shown that \(\|u - u_h\|_0 = O(h^{s-3/2})\) under different assumptions than those made in (4.24). In [25] it is shown that in any subdomain \(\Omega_0 \subseteq \Omega\), \(\|u - u_h\|_{0,\Omega_0}\) is of "nearly" the same order as \(\|\psi - \psi_h\|_{0,\Omega}\), provided \(\psi\) is sufficiently smooth. Finally we note that our approach allows the treatment of the case when \(g \in (H^2_h)^' - H^{-1}(\Omega)\). For example, we could treat the case where \(g\) is the Dirac function, which corresponds to a concentrated load in plate theory.

Estimates (4.25) are new for this problem. (4.25c) provides an estimate on the rate at which the jumps in the normal derivatives of \(\psi_h\) across interelement boundaries is converging to zero and also contains the estimate

\[
\int_{\Gamma_\tau} \left| \frac{\partial \psi_h}{\partial \nu} \right|^2 ds \leq Ch^{s-3/2} \|\psi\|_s.
\]

(b) Herrmann-Miyoshi Method. In this subsection we consider another mixed method for the approximate solution of (4.1). In this method the auxiliary variable is the matrix of second-order partial derivatives of \(\psi\).

For \(T \in T_h\) and \(v = (v_{ij}), 1 \leq i, j \leq 2\), with \(v_{ij} \in H^1(T)\) and \(v_{12} = v_{21}\), we set

\[
M_\nu(v) = \sum_{i,j=1}^{2} v_{ij} \nu^j \nu^i
\]

and

\[
M_{\nu\tau}(v) = \sum_{i,j=1}^{2} v_{ij} \nu^j \tau_i,
\]

where \(\nu = (\nu_1, \nu_2)\) is the unit outward normal and \(\tau = (\tau_1, \tau_2) = (\nu_2, -\nu_1)\) is the unit tangent along \(\partial T\). We note that

\[
(4.29) \quad \sum_{i,j=1}^{2} \int_T \left(v_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} + \frac{\partial v_{ij}}{\partial x_i} \frac{\partial \varphi}{\partial x_j} \right) dx = \int_{\partial T} \left(M_\nu(v) \frac{\partial \varphi}{\partial \nu} + M_{\nu\tau}(v) \frac{\partial \varphi}{\partial \tau} \right) ds
\]
for all \(\varphi \in H^2(T) \). On
\[
V_h(\Omega) = \{ \nu = (v_{ij}), 1 \leq i, j \leq 2: v_{12} = v_{21}, v_{ij} \in H^1(T) \forall T \in T_h, \text{ and} \\
M_\nu(v) \text{ is continuous across interelement boundaries}\}
\]
we define
\[
\|v\|_{0,h}^2 = \sum_{i,j} \int _{\Omega} |v_{ij}|^2 \, dx + h \int_{\Gamma_h} (M(v))^2 \, ds,
\]
where, on an interior edge \(T' = \partial T^1 \cap \partial T^2 \) of \(T_h \), we set \(M(v) = M_{v^1}(v) = M_{v^2}(v) \), and, on a boundary edge \(T' \) of \(T_h \), we set \(M(v) = M_\nu(v) \). Then we define \(V_h \) to be the completion of \(V_h \) with respect to \(\|v\|_{0,h} \). It is clear that
\[
(4.30) \quad \|v\|_{0,h} \leq \left(\sum_{i,j} \|v_{ij}\|_{0,h}^2 \right)^{1/2}
\]
for all \(v \in H^1(\Omega) = \{ v = (v_{ij}), 1 \leq i, j \leq 2: v_{12} = v_{21}, v_{ij} \in H^1(\Omega) \} \). When we use the norm \(\|\cdot\|_{0,h} \), it will be clear from the context whether we are applying it to scalar-valued or matrix-valued functions. As in Subsection (a) we let \(\omega_h = H_0^2 \cap H_0^1 \). Then the mixed method studied in this subsection is based on the following formulation of \((4.1) \):

Given \(g \in H^{-1}(\Omega) \), find \((u, \psi) \in V_h \times \omega_h \) satisfying
\[
(4.31) \quad \begin{cases}
\sum_{i,j=1}^2 \int_{\Omega} u_{ij} v_{ij} \, dx + \sum_{i,j=1}^2 \sum_{T \in T_h} - \int_T v_{ij} \frac{\partial^2 \psi}{\partial x_i \partial x_j} \, dx \\
+ \int_{\Gamma_h} M(v) \frac{\partial \psi}{\partial v} \, ds = 0 \quad \forall v \in V_h, \\
\sum_{i,j=1}^2 \sum_{T \in T_h} - \int_T u_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \, dx + \int_{\Gamma_h} M(u) \frac{\partial \varphi}{\partial v} \, ds - \int_{\Omega} g \varphi \, dx \quad \forall \varphi \in \omega_h.
\end{cases}
\]

Using (4.29), we can easily establish the relations between (4.1) and (4.31). If \(\psi \) is the solution of (4.1) and \(u_{ij} = \partial^2 \psi / \partial x_i \partial x_j \), then \((u, \psi) \) is a solution of (4.31), and if \((u, \psi) \) is a solution of (4.31), then \(\psi \) is the solution of (4.1) and \(u_{ij} = \partial^2 \psi / \partial x_i \partial x_j \).

(4.31) is an example of problem \(P \) with \(V_h \) and \(\omega_h \) as above,
\[
a_h(u, v) = \sum_{i,j} \int_{\Omega} u_{ij} v_{ij} \, dx,
\]
and
\[
b_h(u, \varphi) = \sum_{i,j} \int_T u_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} \, dx + \int_{\Gamma_h} M(u) \frac{\partial \varphi}{\partial v} \, ds.
\]

Letting \(S_h \) be as defined in (3.1), we consider the approximate problem \(P_h \) with
\[
V_h = \{ v = (v_{ij}): v_{12} = v_{21}, v_{ij} \in S_h \}
\]
and
\[
W_h = S_h \cap H_0^1(\Omega).
\]
With this choice for the forms a_h and b_h and spaces V_h and W_h, problem P_h describes
the Herrmann-Miyoshi method [15], [16], [20]. Note that with this method we ob-
tain direct approximations to ψ and $\partial^2 \psi / \partial x_i \partial x_j$ (the displacement and moments in
elasticity problems).

In order to apply Theorem 1, we must check (2.1), (2.2), (2.5), and (2.6). (2.1) and (2.2) are immediate. In light of (4.30), the proof of (2.5) is similar to the proof of (2.5) for the method in Subsection (a). Finally we consider (2.6). Let $\varphi \in W_h$ be
given. By Theorem 3 we know there is a $v \in S_h$ such that

$$\int_\Omega \nabla v \cdot \nabla \varphi \, dx \geq \| \varphi \|_{2,h}^2,$$

and

$$\| v \|_{0,h} \leq C \| \varphi \|_{2,h}^2.$$

Now let $v = (v^T 0)$. We immediately have $v \in W_h$,

$$b_h(v, \varphi) = \sum_{i,j} \int_\Omega \frac{\partial^2 \varphi}{\partial x_j \partial x_i} \, dx = \int_\Omega \nabla v \cdot \nabla \varphi \, dx \geq \| \varphi \|_{2,h}^2,$$

and

$$\| v \|_{0,h} \leq \left(\sum_{i,j} \| u_{ij} \|_{0,h}^2 \right)^{1/2} \leq \sqrt{2} C \| \varphi \|_{2,h}^2.$$

This proves (2.6).

We are now ready to apply Theorem 1 to analyze the Herrmann-Miyoshi method. This application is essentially the same as that in Subsection (a). We use the approxi-
mability results in Lemma 3, as modified for matrix-valued functions with the aid of (4.30), and in Lemma 4. We will just state the results.

Suppose $\psi \in H^r(\Omega), r \geq 3$. Then

$$\| u - u_h \|_{0,h} + \| \psi - \psi_h \|_{2,h} \leq Ch^{s-2} \| \psi \|_s,$$

(4.32)

and

$$\| \psi - \psi_h \|_1 \leq Ch^{s-1} \| \psi \|_s,$$

(4.33)

where $s = \min(r, k + 1)$. From (4.32) we obtain

$$\| u - u_h \|_0 \leq Ch^{s-2} \| \psi \|_s.$$

Estimates (4.33) and (4.34) improve on those in Brezzi-Raviart [7]. Rannacher [22] recently obtained these estimates for the case $k = 2$. Falk-Osborn [12] also
proved these estimates. We further note that (4.32) contains additional information
corresponding to the mesh dependent norms; cf. (4.25).

(c) Herrmann-Johnson Method. In this subsection we consider a further method
for the approximate solution of (4.1) in which, as in the case treated in Subsection
(b), the auxiliary variable is the matrix of second-order partials of ψ. Also as in Sub-
section (b), the method is based on the variational formulation (4.31) (the spaces V_h
and W_h and the forms a_h and b_h are the same as in Subsection (b)).
We now consider the problem P_n with
\[V_h = \{ v \in V_h : v_{ij}|_T \in P_{k-1} \quad \forall T \in T_h \} \]
and
\[W_h = S_h \cap H^1_0(\Omega). \]
This choice leads to the Herrmann-Johnson method \[15\], \[16\], \[17\]. Note that this method differs from the Herrmann-Miyoshi method only in the choice of the finite-dimensional space V_h.

This example has certain special features which allow an analysis that is rather different than that employed in the previous two examples. These special features involve the existence of two particular projection operators denoted by π_h and Σ_h. We turn to this now.

π_h is defined as in \[7, Section 4\]. For $v = (u_{ij})$ with $u_{ij} \in H^1(T)$ and $u_{12} = u_{21}$, we define $\pi_T v = (w_{ij})$ with $w_{ij} \in P_{k-1}$ and $w_{12} = w_{21}$ by

\[
\frac{1}{M(v - \pi_T v)} ds = 0 \quad \forall f \in P_{k-1} \quad \text{and for each side } T' \text{ of } T,
\]

\[
\int_T [v_{ij} - (\pi_T v)_{ij}] f dx = 0 \quad \forall f \in P_{k-2}.
\]

By Lemma 3 in \[6\], $\Pi_T v$ is uniquely determined by (4.35). Now for $v \in V^c_h$, we define $\pi_h v \in V_h$ by

\[(\pi_h v)|_T = \pi_T (v|_T). \]

Since we can write
\[b_h(v, \varphi) = \sum_{T \in T_h} \left\{ - \sum_{i,j} \int_T v_{ij} \frac{\partial^2 \varphi}{\partial x_i \partial x_j} dx + \int_{\partial T} M(v) \frac{\partial \varphi}{\partial \nu} ds \right\}, \]

it is clear that

\[b_h(v - \pi_h v, \varphi) = 0 \quad \forall \varphi \in W_h. \]

Concerning the approximation of v by $\pi_h v$, we have

Lemma 6. Suppose $v \in [H^{r-2}(\Omega)]^4 \cap V^c_h$, $r \geq 3$. Then

\[\| \pi_h v - v \|_{0,h} \leq Ch^l \| v \|_l \]

for $1 \leq l \leq \min(k, r - 2)$.

Proof. In Lemma 4 of \[7\] it is shown that

\[\| \pi_h v - v \|_0 \leq Ch^l \| v \|_l. \]

Thus it remains to show that

\[\left(h \int_{T_h} |M(\pi_h v - v)|^2 ds \right)^{1/2} \leq Ch^l \| v \|_l. \]
Let \(T \in T_h \) and assume \(T \) is the image of \(\tilde{T} \) under the mapping \(F(\tilde{x}) = B\tilde{x} + b \). Given a matrix-valued function \(w(x) \) on \(T \), we set \(\tilde{w}(\tilde{x}) = Cw(F(\tilde{x}))F^t, \tilde{x} \in \tilde{T} \), where \(C = B^{-1} \). (Note that the correspondence between (matrix-valued) functions on \(T \) and on \(\tilde{T} \) is different than the one introduced in Section 3.) Recall that \(\nu = C^{-}v|B^t| \) ((3.5)). Then we have

\[
\int_{\partial \tilde{T}} |M_{\nu}(v - \pi_T v)|^2 \, ds = \sum_i \int_{\partial T_i} |M_{\nu}(v - \pi_T v)|^2 \, ds = \sum_i \int_{\partial T_i} |\nu|^2(v - \pi_T v)|^2 \, ds
\]

\[
= \sum_i \int_{\partial T_i} |\nu|^2 CB(\nu - \pi_T \tilde{v}) (F^{-1}(x))B^tC^t|v|^2 |B^t| \, ds
\]

\[
\leq \|B\|_4 \max|T_i| \int_{\partial T} |M_{\nu}(\nu - \pi_T \tilde{v})|^2 \, ds \leq C(\tilde{T})h_T \|B\|_4 |\nu|_{l,T}^2
\]

\[
\leq C(\tilde{T})h_T \|B\|_4 (2l+2) \|C\|_4 |\det B|^{-1} |\nu|_{l,T}^2
\]

\[
\leq \frac{C(\tilde{T})h_T^3|\tilde{T}|}{\rho^{2(l+2)}} \pi h^{2l-1} |\nu|_{l,T}^2.
\]

Hence

\[
h \int_{\Gamma_h} |M_{\nu}(v - \pi_h v)|^2 \, ds \leq \sum_T h \int_{\partial T} |M_{\nu}(v - \pi_T v)|^2 \, ds \leq Ch^{2l} |\nu|_{l,\Omega}^2.
\]

This completes the proof.

The second projection operator \(\Sigma_h \) is the interpolation operator \(I_h \) introduced in Section 3. As in the proof of Lemma 5 in [7], for \(v \in V_h \) and \(\varphi \in H^2(\Omega) \cap H^1_0(\Omega) \), we can write

\[
b_h(v, \varphi) = -\sum_T \sum_{i,j} \int_T \frac{\partial^2 u_{ij}}{\partial x_i \partial x_j} \varphi \, dx + \sum_{T' \in I_h} \int_{T'} A(T', v) \varphi \, ds
\]

\[
+ \sum_{a \in I_h} B(a, v) \varphi(a),
\]

where \(I_h \) is the set of all sides of the triangulation \(T_h \), \(J_h \) is the set of all vertices of \(T_h \), and \(A(T', v) \) is a polynomial of degree less than or equal to \(k - 2 \) in the variable \(s \). Since for \(v \in V_h \) we have \(\partial^2 u_{ij}/\partial x_i \partial x_j |_{T} \in P_{k-3} \) and \(A(T', v) \in P_{k-2} \), it follows from (4.38) that \(\Sigma_h \varphi = I_h \varphi \), as defined in Section 3, satisfies

\[
b_h(v, \Sigma_h \varphi - \varphi) = 0 \quad \forall v \in V_h.
\]

Now we are ready to derive the error estimates. First we estimate \(\|u - u_h\|_0 \).

Subtracting (2.4a) from (2.3a), we obtain

\[
a_h(u - u_h, v) + b_h(v, \psi - \psi_h) = 0 \quad \forall v \in V_h.
\]

Suppose \(v \in Z_h \equiv \{ w \in V_h : b_h(w, \varphi) = 0 \ \forall \varphi \in W_h \} \). Then from (4.39) we see that \(b_h(v, \varphi) = b_h(v, \Sigma_h \varphi) = 0 \) for all \(\varphi \in H^2(\Omega) \cap H^1_0(\Omega) \). Hence from (4.40) we have

\[
a_h(u - u_h, v) = 0 \quad \forall v \in Z_h.
\]
Subtracting (2.4b) from (2.3b) and using (4.36), we see that

\[b_h(\pi_h u - u_h, \varphi) = b_h(u - u_h, \varphi) = 0 \quad \forall \varphi \in W_h, \]

i.e., \(\pi_h u - u_h \in Z_h \). Thus, recalling (4.41),

\[\|u - u_h\|_0^2 = a_h(u - u_h, u - u_h) \]

\[= a_h(u - u_h, (u - \pi_h u_h) + (\pi_h u - u_h)) \]

\[= a_h(u - u_h, u - \pi_h u) \leq \|u - u_h\|_0 \|u - \pi_h u\|_0 \]

and hence

(4.42) \[\|u - u_h\|_0 \leq \|\pi_h u - u\|_0. \]

Suppose now that \(\psi \in H^r(\Omega), r \geq 3 \). Then from (4.42) and Lemma 6 we have

(4.43) \[\|u - u_h\|_0 \leq C\gamma \psi\|_{s+2}, \]

where \(s = \min(k, r - 2) \).

Now we estimate \(\psi - \psi_h \). As in Subsection (a) we can write

(4.44) \[(d, \psi - \psi_h)_0 = -a_h(u - u_h, w - z) - b_h(w - z, \psi - \psi_h) \]

\[- b_h(u - u_h, \theta - \mu) \quad \forall (z, \mu) \in W_h \times W_h, \]

where \(\theta \) is the solution of

\[\left\{ \begin{array}{l}
\Delta^2 \theta = d \in L_2 \\
\theta = \frac{\partial \theta}{\partial n} = 0
\end{array} \right. \quad \text{on } \Omega, \]

and \(w_{ij} = \frac{\partial^2 \theta}{\partial x_i \partial x_j} \). We note that \((w, \theta)\) satisfies

(4.45) \[\left\{ \begin{array}{l}
a_h(w, v) + b_h(v, \theta) = 0 \\
b_h(w, \varphi) = -\int_{\Omega} d\varphi \ dx
\end{array} \right. \quad \forall v \in W_h, \forall \varphi \in W_h \]

(cf. (4.31)). In (4.44) let \(z = \pi_h w \) and \(\mu = \Sigma_h \theta \). This gives

(4.46) \[(d, \psi - \psi_h)_0 = -a_h(u - u_h, w - \pi_h w) - b_h(w - \pi_h w, \psi - \psi_h) \]

\[- b_h(u - u_h, \theta - \Sigma_h \theta). \]

We now estimate each term in (4.46).

Using (4.36), (4.39), (4.45), and Lemma 3, we have

(4.47) \[|b_h(w - \pi_h w, \psi - \psi_h)| = |b_h(w - \pi_h w, \psi - \Sigma_h \psi)| \]

\[= |b_h(w, \psi - \Sigma_h \psi)| = |(d, \psi - \Sigma_h \psi)_0| \]

\[\leq \|d\|_0 \|\psi - \Sigma_h \psi\|_0 \leq C\gamma \psi\|_{s+2}, \]

where \(s = \min(r - 1, k + 1) \).
In our estimate for the third term on the right side of (4.46), we treat the cases $k \geq 2$ and $k = 1$ separately. First assume $k \geq 2$. Then, using (4.26), (4.39), and Lemmas 4 and 6, we find that

\begin{equation}
|b_h(u - u_h, \theta - \Sigma_h \theta)| = |b_h(u - \pi_h u, \theta - \Sigma_h \theta)| \\
\leq C \lVert u - \pi_h u \rVert_{0,h} \lVert \theta - \Sigma_h \theta \rVert_{2,h} \leq Ch^{s-1} \lVert u \rVert_{s-1,h} \lVert \theta \rVert_3
\end{equation}

where $s = \min(r - 1, k + 1)$. Now suppose $k = 1$. Then, using (4.26), (4.31), (4.39), and Lemma 3, we have

\begin{equation}
|b_h(u - u_h, \theta - \Sigma_h \theta)| = |b_h(u, \theta - \Sigma_h \theta)| = |(\Delta^2 \psi, \theta - \Sigma_h \theta)_0| \\
\leq \lVert \Delta^2 \psi \rVert_0 \lVert \theta - \Sigma_h \theta \rVert_0 \leq Ch^2 \lVert \Delta^2 \psi \rVert_0 \lVert \theta \rVert_2 \\
\leq Ch^2 \lVert \psi \rVert_4 \lVert d \rVert_0.
\end{equation}

Finally, using (4.26), (4.42), and Lemma 6, we obtain

\begin{equation}
|a_h(u - u_h, w - \pi_h w)| \leq \lVert u - u_h \rVert_0 \lVert w - \pi_h w \rVert_0 \leq Ch^2 \lVert \psi \rVert_{s+1} \lVert d \rVert_0,
\end{equation}

where $s = \min(k + 1, r - 1)$.

Combining (4.46)-(4.50), we have

\begin{equation}
\lVert \psi - \psi_h \rVert_0 = \sup_{d \in L^2} \frac{|(d, \psi - \psi_h)_0|}{\lVert d \rVert_0} \\
\leq Ch^s \lVert \psi \rVert_{s+1}, \quad s = \min(k + 1, r - 1), \text{ if } k \geq 2
\end{equation}

and

\begin{equation}
\lVert \psi - \psi_h \rVert_0 \leq Ch^2 \lVert \psi \rVert_4, \quad \text{if } k = 1.
\end{equation}

One can also prove that

\begin{equation}
\lVert \psi - \psi_h \rVert_1 \leq Ch^{s-1} \lVert \psi \rVert_s, \quad s = \min(r, k + 1), \text{ if } k \geq 2
\end{equation}

and

\begin{equation}
\lVert \psi - \psi_h \rVert_1 \leq Ch \lVert \psi \rVert_3, \quad \text{if } k = 1.
\end{equation}

Estimate (4.53) improves on estimates in [7]. Estimates (4.43) and (4.51)-(4.53) are given in [7], and (4.43) and (4.51)-(4.54) are proved in [12].

Remarks. (1) As in Subsection (b), we could have shown that the method studied here is stable with respect to the norm $\lVert \cdot \rVert_{0,h} + \lVert \cdot \rVert_{2,h}$ and then obtained error estimates in this norm. This approach would have allowed the treatment of the case when $g \in (H^1_0)' - H^{-1}(\Omega)$ (cf. the next to the last paragraph in Subsection (a)). However, due to the special nature of this example, more refined estimates can be obtained by the analysis sketched above in the case when sufficient regularity of the solution is assumed. Thus the mesh dependent norms play a less central role in the analysis of
this method than in previous methods. They are, however, convenient; their use leads to a very natural setting for the study of this example.

(2) The analysis in this subsection was based on the projections π_h and Σ_h and the fact that

$$
Z_h \subset Z \equiv \{ w : w \in V_h, b_h(w, \varphi) = 0 \ \forall \varphi \in H^2(\Omega) \cap H^1_0(\Omega) \},
$$

which follows from the existence of Σ_h. For a general discussion of the projections π_h and Σ_h and the condition $Z_h \subset Z$ see Falk and Osborn [12] and Fortin [13].

(3) In this subsection the mesh family is not required to be quasi-uniform.

Acknowledgement. The second author would like to thank R. Falk for several helpful discussions on mixed methods.

Institute for Physical Science and Technology, and
Department of Mathematics
University of Maryland
College Park, Maryland 20742

Department of Mathematics
University of Maryland
College Park, Maryland 20742

Institute of Mathematics
Helsinki University of Technology
Helsinki, Finland

22. R. RANNACHER, "On nonconforming and mixed finite element methods for plate bending problems—the linear case."

25. R. SCHOLZ, "Interior error estimates for a mixed finite element method." (Preprint.)