Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Analysis of mixed methods using mesh dependent norms

Authors: I. Babuška, J. Osborn and J. Pitkäranta
Journal: Math. Comp. 35 (1980), 1039-1062
MSC: Primary 65N30; Secondary 65N15, 73K10
MathSciNet review: 583486
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper analyzes mixed methods for the biharmonic problem by means of new families of mesh dependent norms which are introduced and studied. More specifically, several mixed methods are shown to be stable with respect to these norms and, as a consequence, error estimates are obtained in a simple and direct manner.

References [Enhancements On Off] (What's this?)

  • [1] I. BABUŠKA, "Error-bounds for finite element method," Numer. Math., v. 16, 1971, pp. 322-333. MR 0288971 (44:6166)
  • [2] I. BABUŠKA & A. AZIZ, "Survey lectures on the mathematical foundations of the finite element method" in The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (A. K. Aziz, Ed.), Academic Press, New York, 1973, pp. 5-359.
  • [3] I. BABUŠKA & J. OSBORN, "Analysis of finite element methods for second order boundary value problems using mesh dependent norms," MRC Tech. Summary Report #1919, University of Wisconsin-Madison; Numer. Math., v. 34, 1980, pp. 41-62. MR 560793 (81g:65143)
  • [4] J. BRAMBLE &. S. HILBERT, "Estimation of linear functional on Sobolev spaces with application to Fourier transforms and spline interpolation," SIAM J. Numer. Anal., v. 13, 1976, pp. 185-197. MR 0263214 (41:7819)
  • [5] F. BREZZI, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers," R.A.I.R.O., R2, v. 8, 1974, pp. 129-151. MR 0365287 (51:1540)
  • [6] F. BREZZI, "Sur la méthode des éléments finis hybrides pour le problème biharmonique," Numer. Math., v. 24, 1975, pp. 103-131. MR 0391538 (52:12359)
  • [7] F. BREZZI & P. RAVIART, "Mixed finite element methods for 4th order elliptic equations," Topics in Numerical Analysis III (J. Miller, Ed.), Academic Press, New York, 1978.
  • [8] P. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [9] P. CIARLET & P. RAVIART, "A mixed finite element method for the biharmonic equation," Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, Ed.), Academic Press, New York, 1974, pp. 125-143. MR 0657977 (58:31907)
  • [10] P. CLEMENT, "Approximation by finite element functions using local regularizaron," R.A.I.R.O., R2, 1975, pp. 77-84. MR 0400739 (53:4569)
  • [11] J. DOUGLAS, JR. & T. DUPONT, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Lecture Notes in Phys., No. 58, Springer-Verlag, Berlin, 1976. MR 0440955 (55:13823)
  • [12] R. FALK & J. OSBORN, Error Estimates for Mixed Methods, MRC Tech. Summary Report #1936, University of Wisconsin-Madison, 1979. MR 592753 (82j:65076)
  • [13] M. FORTIN, "Analysis of the convergence of mixed finite element methods," R.A.I.R.O., v. 11, 1977, pp. 341-354. MR 0464543 (57:4473)
  • [14] R. GLOWINSKI, "Approximations externes par éléments finis de Lagrange d'ordre un et deux, du problème de Dirichlet pour l'opérateur biharmonique. Méthodes iteratives de résolutions des problems approchés, in Topics in Numerical Analysis (J. J. H. Miller, Ed.), Academic Press, New York, 1973, pp. 123-171. MR 0351120 (50:3609)
  • [15] L. HERRMANN, "Finite element bending analysis for plates," J. Eng. Mech., Div. ASCE EM5, v. 93, 1967, pp. 49-83.
  • [16] L. HERRMANN, "A bending analysis for plates," Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL-TR-66-88, pp. 577-604.
  • [17] C. JOHNSON, "On the convergence of a mixed finite element method for plate bending problems," Numer. Math., v. 21, 1973, pp. 43-62. MR 0388807 (52:9641)
  • [18] R. KELLOGG & J. OSBORN, "A regularity result for the Stokes problem," J. Funct. Anal., v. 21, 1976, pp. 397-431. MR 0404849 (53:8649)
  • [19] B. MERCIER, "Numerical solution of the biharmonic problems by mixed finite elements of class $ {C^0}$," Boll. Un. Mat. Ital., v. 10, 1974, pp. 133-149. MR 0378442 (51:14610)
  • [20] T. MIYOSHI, "A finite element method for the solution of fourth order partial differential equations," Kunamoto J. Sci. (Math.), v. 9, 1973, pp. 87-116. MR 0386298 (52:7156)
  • [21] J. OSBORN, "Analysis of mixed methods using mesh dependent spaces," Computational Methods in Nonlinear Mechanics (J. T. Oden, Ed.), North-Holland, Amsterdam, 1980. MR 576914 (81h:65116)
  • [22] R. RANNACHER, "On nonconforming and mixed finite element methods for plate bending problems-the linear case." (Preprint.) MR 555385 (80i:65125)
  • [23] R. SCHOLZ, "Approximation von Sattelpunkten mit Finiten Elementen," Tagungsband, Bonn. Math. Schr., v. 89, 1976, pp. 53-66. MR 0471377 (57:11111)
  • [24] R. SCHOLZ, "A mixed method for 4th order problems using linear finite elements," R.A.I.R.O., v. 12, 1978, pp. 85-90. MR 0483557 (58:3549)
  • [25] R. SCHOLZ,"Interior error estimates for a mixed finite element method." (Preprint.) MR 538563 (80g:65116)
  • [26] J. THOMAS, Sur l'Analyse Numérique des Méthodes d'Eléments Finis Hybrides et Mixtes, Thesis, Université P & M Curie, Paris, 1977.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 65N15, 73K10

Retrieve articles in all journals with MSC: 65N30, 65N15, 73K10

Additional Information

Keywords: Mixed methods, error estimates, stability
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society