On Determination of Best-Possible Constants in Integral Inequalities Involving Derivatives

By Beny Neta

Abstract. This paper is concerned with the numerical approximation of the best possible constants \(\gamma_{n,k} \) in the inequality

\[
\|F^{(k)}\|^2 \leq \gamma_{n,k}^{-1} \{\|F\|^2 + \|F^{(n)}\|^2\},
\]

where

\[
\|F\|^2 = \int_0^\infty |F(x)|^2 \, dx.
\]

A list of all constants \(\gamma_{n,k} \) for \(n \leq 10 \) is given.

1. Introduction. This paper utilizes the algorithm given in [1] to numerically approximate the best possible constants \(\gamma_{n,k} \), \(1 \leq k < n \), for \(n \leq 10 \) in the inequality:

\[
(\ast) \quad \|F^{(k)}\|^2 \leq \gamma_{n,k}^{-1} \{\|F\|^2 + \|F^{(n)}\|^2\},
\]

where \(\| \cdot \| \) denotes the \(L_2 [0, \infty) \) norm. The function \(F \) has a locally absolutely continuous \((n - 1)\)st derivative. The inequality (1) is equivalent to

\[
\|F^{(k)}\| \leq M_{n,k} \|F^{(n-k)}\|^n \|F^{(n)}\|^{k/n},
\]

where

\[
M_{n,k}^2 = \gamma_{n,k}^{-1} \left(\frac{n - k}{k} \right)^{k/n} + \left(\frac{k}{n - k} \right)^{(n-k)/n};
\]

see [1].

Interest in inequalities (1) and (2) increased because of their close connection with problems of best approximation of the differentiation operator by bounded operators; see [2], [3], [4], [5], and with the problem of best approximation of one class of functions by another; see [4], [6], [7].

In the next section we shall give lower and upper bounds for the best possible constants \(\gamma_{n,k} \) and \(M_{n,k} \) for \(n \leq 10 \).

2. Numerical Results. In this section the best possible constants \(\gamma_{n,k} \) and \(M_{n,k} \) are listed.

\[
\gamma_{21} = 1, \quad \text{see [1].}
\]

\[
\gamma_{31} = \gamma_{32} = \frac{\sqrt{3} - 2\sqrt{2}}{\sqrt{3} - 2\sqrt{2}} = .555669, \quad \text{see [1].}
\]
In [1], \(\gamma_{41} \) is characterized as the smallest positive zero of the polynomial \(Z^8 - 6Z^4 - 8Z^2 + 1 \), and \(\gamma_{42} \) is the smallest positive zero of the polynomial \(Z^4 - 2Z^2 - 4Z + 1 \). Using Müller's method [8], we obtain \(\gamma_{41} = \gamma_{43} = .339246, \gamma_{42} = .225270 \).

Remark. It is known, see [1], that

\[
\gamma_{n,n-k} = \gamma_{n,k} \quad \text{for all } n, k.
\]

Using (4) and the values listed in Table 1, one has the following table of lower and upper bounds on \(\gamma_{n,k} \) for \(2 \leq n \leq 10 \) and \(1 \leq k \leq \lfloor n/2 \rfloor \). For other values of \(k \), use (4).

<table>
<thead>
<tr>
<th>(n) (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.1192</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.555669</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.339246</td>
<td>.225271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(.225837, .2258375) (.102266, .102268)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(.160328, .160338) (.051986, .05199) (.0361167, .0361177)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(.11936, .11943) (.028924, .02895) (.014698, .0147)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(.09128, .09129) (.0172, .01732) (.0068112, .00681124) (.005014, .005015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(.07593, .07594) (.010795, .0108) (.00345, .0036) (.00193, .001938)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(.0479, .048) (.0068, .007) (.001616, .0014165) (.000681505, .00068151) (.000642565, .00064257)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using (3) and the values listed in Table 1, one has the following table of lower and upper bounds on \(M_{n,k} \) for \(2 \leq n \leq 10 \) and \(1 \leq k \leq \lfloor n/2 \rfloor \). For other values of \(k \), use \(M_{n,n-k} = M_{n,k} \) for all \(n, k \).

<table>
<thead>
<tr>
<th>(n) (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.41421</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.07005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.27432</td>
<td>2.9763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(2.070248, 2.070249) (4.37797, 4.37801)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(3.12838, 3.12848) (6.02917, 6.02940) (7.44141, 7.44151)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(3.55221, 3.55325) (7.92662, 7.93019) (11.60467, 11.60566)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(4.32029, 4.32057) (12.54043, 12.54333) (23.07295, 23.23717) (32.02543, 32.09173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(5.36995, 5.37555) (15.35033, 15.57423) (36.06112, 36.06367) (53.62986, 53.63004) (55.78980, 55.79001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks. 1. The lower and upper bounds for each \(n \) and \(k \) are given in parentheses and separated by a comma, for example, \(.11936 \leq \gamma_{7,1} \leq .11943 \).

2. The number \(M_{4,2} \) in Table 2 agrees with that obtained by Bradley and Everitt [7].

3. The number \(M_{6,3} \) in this table agrees with a result of Dawson and Everitt [9].

Conjecture. For fixed \(k \) the \(\gamma_{n,k} \) are decreasing functions of \(n \). For fixed \(n \) the \(\gamma_{n,k} \) are decreasing functions of \(k \) up to \(k = \lfloor n/2 \rfloor \).
Thus the initial value of $y_{n,k}$ may be taken in the interval

$$\mathcal{I}_{n,k}^* = (0, y_{n-1,k}) \quad \text{for } n > 2$$

rather than the interval suggested by Kupcov, namely

$$\mathcal{I}_{n,k} = (0, g_{n,k}),$$

where

$$g_{n,k} = \frac{n}{k(n-k)(n-k)n}.$$

Acknowledgements. The author would like to thank Professors A. Zettl and M. K. Kwong for introducing him to the problem, and the referee for his suggestions which greatly improved the paper.

Department of Mathematical Sciences
Northern Illinois University
DeKalb, Illinois 60115