Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On determination of best-possible constants in integral inequalities involving derivatives


Author: Beny Neta
Journal: Math. Comp. 35 (1980), 1191-1193
MSC: Primary 26D15; Secondary 46E30, 65J99
DOI: https://doi.org/10.1090/S0025-5718-1980-0583496-X
MathSciNet review: 583496
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the numerical approximation of the best possible constants $ {\gamma _{n,k}}$ in the inequality

$\displaystyle {\left\Vert {{F^{(k)}}} \right\Vert^2} \leqslant \gamma _{n,k}^{ ... ...ft\Vert F \right\Vert}^2} + {{\left\Vert {{F^{(n)}}} \right\Vert}^2}} \right\},$

where

$\displaystyle {\left\Vert F \right\Vert^2} = \int _0^\infty \vert F(x){\vert^2}\;dx.$

A list of all constants $ {\gamma _{n,k}}$ for $ n \leqslant 10$ is given.

References [Enhancements On Off] (What's this?)

  • [1] N. P. KUPCOV, "Kolmogorov estimates for derivatives in $ {L_2}[0,\infty )$," Proc. Steklov Inst. Math., v. 138, 1975, pp. 101-125. MR 0393388 (52:14198)
  • [2] S. B. STEČKIN, "Inequalities between norms of derivatives of arbitrary functions," Acta Sci. Math. (Szeged), v. 26, 1965, pp. 225-230. MR 0185064 (32:2534)
  • [3] S. B. STEČKIN, "Best approximation of linear operators," Mat. Zametki, v. 1, 1967, pp. 137-148 = Math. Notes, v. 1, 1967, pp. 91-99. MR 0211169 (35:2051)
  • [4] V. V. ARESTOV, "Sharp inequalities between the norms of functions and their derivatives," Acta Sci. Math. (Szeged), v. 33, 1972, pp. 243-267. MR 0320729 (47:9263)
  • [5] V. V. ARESTOV, "On some extremal problems for differentiable functions of one variable," Proc. Steklov Inst. Math., v. 138, 1975, pp. 1-29. MR 0415165 (54:3256)
  • [6] JU. N. SUBBOTIN & L. V. TAIKOV, "Best approximation of a differentiation operator in the space $ {L_2}$," Mat. Zametki, v. 3, 1968, pp. 157-164 = Math. Notes, v. 3, 1968, pp. 100-105. MR 0228892 (37:4471)
  • [7] J. S. BRADLEY & W. N. EVERITT, "On the inequality $ {\left\Vert f'' \right\Vert^2} \leqslant K\left\Vert f \right\Vert \bullet \left\Vert {{f^{(4)}}} \right\Vert$," Quart. J. Math. Oxford Ser. (2), v. 25, 1974, pp. 241-252. MR 0349930 (50:2423)
  • [8] S. D. CONTE & C. DE BOOR, Elementary Numerical Analysis: An Algorithmic Approach, McGraw-Hill, New York, 1972. MR 0202267 (34:2140)
  • [9] E. R. DAWSON & W. N. EVERITT, On Recent Results in Integral Inequalities Involving Derivatives, Lecture given at the Ordinary and Partial Differential Equations Conference held at Dundee, Scotland, March 1976. MR 0477213 (57:16754)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 26D15, 46E30, 65J99

Retrieve articles in all journals with MSC: 26D15, 46E30, 65J99


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0583496-X
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society