Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Gaussian quadrature of integrands involving the error function


Authors: J. P. Vigneron and Ph. Lambin
Journal: Math. Comp. 35 (1980), 1299-1307
MSC: Primary 65A05; Secondary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1980-0583507-1
MathSciNet review: 583507
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Orthogonal polynomials corresponding to the weight function $ 1 - {\operatorname{erf}}(x)$ and defined on the positive real axis are constructed. Abscissas and weight factors for the associated Gaussian quadrature are then deduced (up to 12-point formulas). The stability of the algorithm used for this particular computation is discussed. An example is provided to test the efficiency of the new Gaussian rule.


References [Enhancements On Off] (What's this?)

  • [1] J. H. AHLBERG, E. N. NILSON & J. L. WALSH, The Theory of Splines and Their Applications, Academic Press, New York, 1967. MR 0239327 (39:684)
  • [2] G. E. FORSYTHE, M. A. MALCOLM & C. B. MOLER, Computer Methods for Mathematical Computation, Prentice-Hall, Englewood Cliffs, N.J., 1977, p. 92. MR 0458783 (56:16983)
  • [3] A. H. STROUD & D. SECREST, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J., 1966. MR 0202312 (34:2185)
  • [4] M. ABRAMOWITZ & I. A. STEGUN, (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Appl. Math. Series No. 55, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642 (29:4914)
  • [5] PH. LAMBIN & J. P. VIGNERON, "Tables for the Gaussian computation of $ \smallint _0^\infty {x^\alpha }\exp ( - x)f(x)dx$ for values of $ \alpha $ varying continuously between $ - 1$ and $ + 1$," Math. Comp., v. 33, 1979, pp. 805-811. MR 521295 (81i:65004)
  • [6] M. M. MORSE & H. FESHBACH, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, Part I, Chap. 8, p. 928.
  • [7] W. GAUTSCHI, "Construction of Gauss-Christoffel quadrature problems," Math. Comp., v. 22, 1968, pp. 251-270. MR 0228171 (37:3755)
  • [8] W. GAUTSCHI, "On the construction of Gaussian quadrature rules from modified moments," Math. Comp., v. 24, 1970, pp. 245-260. MR 0285117 (44:2341a)
  • [9] W. GAUTSCHI, "Algorithms 3311 Gaussian quadrature methods," Comm. ACM, v. 11, 1968, pp. 432-436.
  • [10] G. H. GOLUB & J. H. WELSCH, "Calculation of Gauss quadrature rules," Math. Comp., v. 23, 1969, pp. 221-230. MR 0245201 (39:6513)
  • [11] J. H. WILKINSON, "The evaluation of the zeros of ill-conditioned polynomials," Parts 1 and 2, Numer. Math., v. 1, 1955, pp. 150-180. MR 0109435 (22:321)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65A05, 65D30

Retrieve articles in all journals with MSC: 65A05, 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0583507-1
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society