Some very large primes of the form

Authors:
G. V. Cormack and H. C. Williams

Journal:
Math. Comp. **35** (1980), 1419-1421

MSC:
Primary 10A25

Erratum:
Math. Comp. **38** (1982), 335.

MathSciNet review:
583519

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several large primes of the form with and are tabulated and four new factors of Fermat numbers are presented.

**[1]**Robert Baillie,*New primes of the form 𝑘⋅2ⁿ+1*, Math. Comp.**33**(1979), no. 148, 1333–1336. MR**537979**, 10.1090/S0025-5718-1979-0537979-0**[2]**Gary B. Gostin,*A factor of 𝐹₁₇*, Math. Comp.**35**(1980), no. 151, 975–976. MR**572869**, 10.1090/S0025-5718-1980-0572869-7**[3]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[4]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[5]**G. Matthew and H. C. Williams,*Some new primes of the form 𝑘⋅2ⁿ+1*, Math. Comp.**31**(1977), no. 139, 797–798. MR**0439719**, 10.1090/S0025-5718-1977-0439719-0**[6]**Raphael M. Robinson,*A report on primes of the form 𝑘⋅2ⁿ+1 and on factors of Fermat numbers*, Proc. Amer. Math. Soc.**9**(1958), 673–681. MR**0096614**, 10.1090/S0002-9939-1958-0096614-7**[7]**A. O. L. ATKIN & N. W. RICKERT, "Some factors of Fermat numbers,"*Abstracts A mer. Math. Soc.*, v. 1, 1980, p. 211.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25

Retrieve articles in all journals with MSC: 10A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583519-8

Article copyright:
© Copyright 1980
American Mathematical Society