Improving the speed of calculating the regulator of certain pure cubic fields

Author:
H. C. Williams

Journal:
Math. Comp. **35** (1980), 1423-1434

MSC:
Primary 12A30

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583520-4

MathSciNet review:
583520

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: To calculate *R*, the regulator of a pure cubic field , a complete period of Voronoi's continued fraction algorithm over is usually generated. In this paper it is shown how, in certain pure cubic fields, *R* can be determined by generating only about one third of this period. These results were used on a computer to find *R* and then the class number for all pure cubic fields , where *p* is a prime, , and . Graphs illustrating the distribution of such cubic fields with class number one are presented.

**[1]**Pierre Barrucand and Harvey Cohn,*A rational genus, class number divisibility, and unit theory for pure cubic fields*, J. Number Theory**2**(1970), 7–21. MR**0249398**, https://doi.org/10.1016/0022-314X(70)90003-X**[2]**Pierre Barrucand and Harvey Cohn,*Remarks on principal factors in a relative cubic field*, J. Number Theory**3**(1971), 226–239. MR**0276197**, https://doi.org/10.1016/0022-314X(71)90040-0**[3]**Pierre Barrucand, H. C. Williams, and L. Baniuk,*A computational technique for determining the class number of a pure cubic field*, Math. Comp.**30**(1976), no. 134, 312–323. MR**0392913**, https://doi.org/10.1090/S0025-5718-1976-0392913-9**[4]**B. N. Delone and D. K. Faddeev,*The theory of irrationalities of the third degree*, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR**0160744****[5]**Taira Honda,*Pure cubic fields whose class numbers are multiples of three*, J. Number Theory**3**(1971), 7–12. MR**0292795**, https://doi.org/10.1016/0022-314X(71)90045-X**[6]**Richard B. Lakein,*Computation of the ideal class group of certain complex quartic fields. II*, Math. Comp.**29**(1975), 137–144. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0444605**, https://doi.org/10.1090/S0025-5718-1975-0444605-4**[7]**Ray Steiner,*On the units in algebraic number fields*, Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math., Winnipeg, Man., 1977, pp. 413–435. MR**532716****[8]**G. F. VORONOI,*On a Generalization of the Algorithm of Continued Fractions*, Doctoral Dissertation, Warsaw, 1896. (Russian)**[9]**H. C. Williams and J. Broere,*A computational technique for evaluating 𝐿(1,𝜒) and the class number of a real quadratic field*, Math. Comp.**30**(1976), no. 136, 887–893. MR**0414522**, https://doi.org/10.1090/S0025-5718-1976-0414522-5**[10]**H. C. Williams,*Certain pure cubic fields with class-number one*, Math. Comp.**31**(1977), no. 138, 578–580. MR**0432591**, https://doi.org/10.1090/S0025-5718-1977-0432591-4**[11]**H. C. Williams and P. A. Buhr,*Calculation of the regulator of 𝑄(√𝐷) by use of the nearest integer continued fraction algorithm*, Math. Comp.**33**(1979), no. 145, 369–381. MR**514833**, https://doi.org/10.1090/S0025-5718-1979-0514833-1**[12]**H. C. Williams and Daniel Shanks,*A note on class-number one in pure cubic fields*, Math. Comp.**33**(1979), no. 148, 1317–1320. MR**537977**, https://doi.org/10.1090/S0025-5718-1979-0537977-7**[13]**H. C. Williams, G. Cormack, and E. Seah,*Calculation of the regulator of a pure cubic field*, Math. Comp.**34**(1980), no. 150, 567–611. MR**559205**, https://doi.org/10.1090/S0025-5718-1980-0559205-7

Retrieve articles in *Mathematics of Computation*
with MSC:
12A30

Retrieve articles in all journals with MSC: 12A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583520-4

Article copyright:
© Copyright 1980
American Mathematical Society