Estimates away from a discontinuity for dissipative Galerkin methods for hyperbolic equations

Author:
William J. Layton

Journal:
Math. Comp. **36** (1981), 87-92

MSC:
Primary 65N30; Secondary 65M15

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595043-8

MathSciNet review:
595043

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the approximate solution of the initial value problem

*v*is taken to have a jump discontinuity at zero, that discontinuity will propagate along , in the true solution

*u*. Estimates in and of the pollution effects of the discontinuity are found. These estimates show those effects to decay exponentially in in regions a fixed distance

*d*from the discontinuity and exponentially in

*d*for fixed

*h*.

**[1]**Mats Y. T. Apelkrans,*On difference schemes for hyperbolic equations with discontinuous initial values*, Math. Comp.**22**(1968), 525–539. MR**0233527**, https://doi.org/10.1090/S0025-5718-1968-0233527-6**[2]**Philip Brenner and Vidar Thomée,*Stability and convergence rates in 𝐿_{𝑝} for certain difference schemes*, Math. Scand.**27**(1970), 5–23. MR**0278549**, https://doi.org/10.7146/math.scand.a-10983**[3]**Philip Brenner and Vidar Thomée,*Estimates near discontinuities for some difference schemes*, Math. Scand.**28**(1971), 329–340 (1972). MR**0305613**, https://doi.org/10.7146/math.scand.a-11028**[4]**Alberto Calderón, Frank Spitzer, and Harold Widom,*Inversion of Toeplitz matrices*, Illinois J. Math.**3**(1959), 490–498. MR**0121652****[5]**J. E. Dendy,*Two methods of Galerkin type achieving optimum 𝐿² rates of convergence for first order hyperbolics*, SIAM J. Numer. Anal.**11**(1974), 637–653. MR**0353695**, https://doi.org/10.1137/0711052**[6]**G. W. Hedstrom,*The rate of convergence of some difference schemes*, SIAM J. Numer. Anal.**5**(1968), 363–406. MR**0230489**, https://doi.org/10.1137/0705031**[7]**W. J. Layton, Ph. D. Thesis, University of Tennessee, 1980.**[8]**R. Richards,*Uniform Spline Interpolation Operators in*, MRC Tech. Report # 1305, University of Wisconsin, November 1972.**[9]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[10]**I. J. Schoenberg,*Cardinal interpolation and spline functions. II. Interpolation of data of power growth*, J. Approximation Theory**6**(1972), 404–420. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. MR**0340899****[11]**I. J. Schoenberg,*Cardinal spline interpolation*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR**0420078****[12]**S. I. Serdyukova, "Oscillations which occur in the numerical computation of the discontinuous solutions of differential equations,"*Ž. Vyčisl. Mat. i Mat. Fiz.*,v. 11, 1971, pp. 411-424.**[13]**Vidar Thomée,*Spline approximation and difference schemes for the heat equation*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 711–746. MR**0403265****[14]**Vidar Thomée,*Convergence estimates for semi-discrete Galerkin methods for initial-value problems*, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1972) Springer, Berlin, 1973, pp. 243–262. Lecture Notes in Math., Vol. 333. MR**0458948****[15]**Vidar Thomée and Burton Wendroff,*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SIAM J. Numer. Anal.**11**(1974), 1059–1068. MR**0371088**, https://doi.org/10.1137/0711081**[16]**R. S. Varga,*Functional analysis and approximation theory in numerical analysis*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1971. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 3. MR**0310504****[17]**Lars B. Wahlbin,*A dissipative Galerkin method for the numerical solution of first order hyperbolic equations*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 147–169. Publication No. 33. MR**0658322****[18]**Lars B. Wahlbin,*A dissipative Galerkin method applied to some quasilinear hyperbolic equations*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 109–117 (English, with Loose French summary). MR**0368447****[19]**Lars Wahlbin,*A modified Galerkin procedure with Hermite cubics for hyperbolic problems*, Math. Comput.**29**(1975), no. 132, 978–984. MR**0388809**, https://doi.org/10.1090/S0025-5718-1975-0388809-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65M15

Retrieve articles in all journals with MSC: 65N30, 65M15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0595043-8

Article copyright:
© Copyright 1981
American Mathematical Society